Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create ip_adapter/attention_processor.py
Browse files
module/ip_adapter/attention_processor.py
ADDED
@@ -0,0 +1,1467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
class AdaLayerNorm(nn.Module):
|
7 |
+
def __init__(self, embedding_dim: int, time_embedding_dim: int = None):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
if time_embedding_dim is None:
|
11 |
+
time_embedding_dim = embedding_dim
|
12 |
+
|
13 |
+
self.silu = nn.SiLU()
|
14 |
+
self.linear = nn.Linear(time_embedding_dim, 2 * embedding_dim, bias=True)
|
15 |
+
nn.init.zeros_(self.linear.weight)
|
16 |
+
nn.init.zeros_(self.linear.bias)
|
17 |
+
|
18 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
19 |
+
|
20 |
+
def forward(
|
21 |
+
self, x: torch.Tensor, timestep_embedding: torch.Tensor
|
22 |
+
):
|
23 |
+
emb = self.linear(self.silu(timestep_embedding))
|
24 |
+
shift, scale = emb.view(len(x), 1, -1).chunk(2, dim=-1)
|
25 |
+
x = self.norm(x) * (1 + scale) + shift
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
class AttnProcessor(nn.Module):
|
30 |
+
r"""
|
31 |
+
Default processor for performing attention-related computations.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
hidden_size=None,
|
37 |
+
cross_attention_dim=None,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
def __call__(
|
42 |
+
self,
|
43 |
+
attn,
|
44 |
+
hidden_states,
|
45 |
+
encoder_hidden_states=None,
|
46 |
+
attention_mask=None,
|
47 |
+
temb=None,
|
48 |
+
):
|
49 |
+
residual = hidden_states
|
50 |
+
|
51 |
+
if attn.spatial_norm is not None:
|
52 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
53 |
+
|
54 |
+
input_ndim = hidden_states.ndim
|
55 |
+
|
56 |
+
if input_ndim == 4:
|
57 |
+
batch_size, channel, height, width = hidden_states.shape
|
58 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
59 |
+
|
60 |
+
batch_size, sequence_length, _ = (
|
61 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
62 |
+
)
|
63 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
64 |
+
|
65 |
+
if attn.group_norm is not None:
|
66 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
67 |
+
|
68 |
+
query = attn.to_q(hidden_states)
|
69 |
+
|
70 |
+
if encoder_hidden_states is None:
|
71 |
+
encoder_hidden_states = hidden_states
|
72 |
+
elif attn.norm_cross:
|
73 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
74 |
+
|
75 |
+
key = attn.to_k(encoder_hidden_states)
|
76 |
+
value = attn.to_v(encoder_hidden_states)
|
77 |
+
|
78 |
+
query = attn.head_to_batch_dim(query)
|
79 |
+
key = attn.head_to_batch_dim(key)
|
80 |
+
value = attn.head_to_batch_dim(value)
|
81 |
+
|
82 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
83 |
+
hidden_states = torch.bmm(attention_probs, value)
|
84 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
85 |
+
|
86 |
+
# linear proj
|
87 |
+
hidden_states = attn.to_out[0](hidden_states)
|
88 |
+
# dropout
|
89 |
+
hidden_states = attn.to_out[1](hidden_states)
|
90 |
+
|
91 |
+
if input_ndim == 4:
|
92 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
93 |
+
|
94 |
+
if attn.residual_connection:
|
95 |
+
hidden_states = hidden_states + residual
|
96 |
+
|
97 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
98 |
+
|
99 |
+
return hidden_states
|
100 |
+
|
101 |
+
|
102 |
+
class IPAttnProcessor(nn.Module):
|
103 |
+
r"""
|
104 |
+
Attention processor for IP-Adapater.
|
105 |
+
Args:
|
106 |
+
hidden_size (`int`):
|
107 |
+
The hidden size of the attention layer.
|
108 |
+
cross_attention_dim (`int`):
|
109 |
+
The number of channels in the `encoder_hidden_states`.
|
110 |
+
scale (`float`, defaults to 1.0):
|
111 |
+
the weight scale of image prompt.
|
112 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
113 |
+
The context length of the image features.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
117 |
+
super().__init__()
|
118 |
+
|
119 |
+
self.hidden_size = hidden_size
|
120 |
+
self.cross_attention_dim = cross_attention_dim
|
121 |
+
self.scale = scale
|
122 |
+
self.num_tokens = num_tokens
|
123 |
+
|
124 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
125 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
126 |
+
|
127 |
+
def __call__(
|
128 |
+
self,
|
129 |
+
attn,
|
130 |
+
hidden_states,
|
131 |
+
encoder_hidden_states=None,
|
132 |
+
attention_mask=None,
|
133 |
+
temb=None,
|
134 |
+
):
|
135 |
+
residual = hidden_states
|
136 |
+
|
137 |
+
if attn.spatial_norm is not None:
|
138 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
139 |
+
|
140 |
+
input_ndim = hidden_states.ndim
|
141 |
+
|
142 |
+
if input_ndim == 4:
|
143 |
+
batch_size, channel, height, width = hidden_states.shape
|
144 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
145 |
+
|
146 |
+
batch_size, sequence_length, _ = (
|
147 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
148 |
+
)
|
149 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
150 |
+
|
151 |
+
if attn.group_norm is not None:
|
152 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
153 |
+
|
154 |
+
query = attn.to_q(hidden_states)
|
155 |
+
|
156 |
+
if encoder_hidden_states is None:
|
157 |
+
encoder_hidden_states = hidden_states
|
158 |
+
else:
|
159 |
+
# get encoder_hidden_states, ip_hidden_states
|
160 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
161 |
+
encoder_hidden_states, ip_hidden_states = (
|
162 |
+
encoder_hidden_states[:, :end_pos, :],
|
163 |
+
encoder_hidden_states[:, end_pos:, :],
|
164 |
+
)
|
165 |
+
if attn.norm_cross:
|
166 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
167 |
+
|
168 |
+
key = attn.to_k(encoder_hidden_states)
|
169 |
+
value = attn.to_v(encoder_hidden_states)
|
170 |
+
|
171 |
+
query = attn.head_to_batch_dim(query)
|
172 |
+
key = attn.head_to_batch_dim(key)
|
173 |
+
value = attn.head_to_batch_dim(value)
|
174 |
+
|
175 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
176 |
+
hidden_states = torch.bmm(attention_probs, value)
|
177 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
178 |
+
|
179 |
+
# for ip-adapter
|
180 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
181 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
182 |
+
|
183 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
184 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
185 |
+
|
186 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
187 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
188 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
189 |
+
|
190 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
191 |
+
|
192 |
+
# linear proj
|
193 |
+
hidden_states = attn.to_out[0](hidden_states)
|
194 |
+
# dropout
|
195 |
+
hidden_states = attn.to_out[1](hidden_states)
|
196 |
+
|
197 |
+
if input_ndim == 4:
|
198 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
199 |
+
|
200 |
+
if attn.residual_connection:
|
201 |
+
hidden_states = hidden_states + residual
|
202 |
+
|
203 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
204 |
+
|
205 |
+
return hidden_states
|
206 |
+
|
207 |
+
|
208 |
+
class TA_IPAttnProcessor(nn.Module):
|
209 |
+
r"""
|
210 |
+
Attention processor for IP-Adapater.
|
211 |
+
Args:
|
212 |
+
hidden_size (`int`):
|
213 |
+
The hidden size of the attention layer.
|
214 |
+
cross_attention_dim (`int`):
|
215 |
+
The number of channels in the `encoder_hidden_states`.
|
216 |
+
scale (`float`, defaults to 1.0):
|
217 |
+
the weight scale of image prompt.
|
218 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
219 |
+
The context length of the image features.
|
220 |
+
"""
|
221 |
+
|
222 |
+
def __init__(self, hidden_size, cross_attention_dim=None, time_embedding_dim: int = None, scale=1.0, num_tokens=4):
|
223 |
+
super().__init__()
|
224 |
+
|
225 |
+
self.hidden_size = hidden_size
|
226 |
+
self.cross_attention_dim = cross_attention_dim
|
227 |
+
self.scale = scale
|
228 |
+
self.num_tokens = num_tokens
|
229 |
+
|
230 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
231 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
232 |
+
|
233 |
+
self.ln_k_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
|
234 |
+
self.ln_v_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
|
235 |
+
|
236 |
+
def __call__(
|
237 |
+
self,
|
238 |
+
attn,
|
239 |
+
hidden_states,
|
240 |
+
encoder_hidden_states=None,
|
241 |
+
attention_mask=None,
|
242 |
+
temb=None,
|
243 |
+
):
|
244 |
+
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
|
245 |
+
|
246 |
+
residual = hidden_states
|
247 |
+
|
248 |
+
if attn.spatial_norm is not None:
|
249 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
250 |
+
|
251 |
+
input_ndim = hidden_states.ndim
|
252 |
+
|
253 |
+
if input_ndim == 4:
|
254 |
+
batch_size, channel, height, width = hidden_states.shape
|
255 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
256 |
+
|
257 |
+
batch_size, sequence_length, _ = (
|
258 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
259 |
+
)
|
260 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
261 |
+
|
262 |
+
if attn.group_norm is not None:
|
263 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
264 |
+
|
265 |
+
query = attn.to_q(hidden_states)
|
266 |
+
|
267 |
+
if encoder_hidden_states is None:
|
268 |
+
encoder_hidden_states = hidden_states
|
269 |
+
else:
|
270 |
+
# get encoder_hidden_states, ip_hidden_states
|
271 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
272 |
+
encoder_hidden_states, ip_hidden_states = (
|
273 |
+
encoder_hidden_states[:, :end_pos, :],
|
274 |
+
encoder_hidden_states[:, end_pos:, :],
|
275 |
+
)
|
276 |
+
if attn.norm_cross:
|
277 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
278 |
+
|
279 |
+
key = attn.to_k(encoder_hidden_states)
|
280 |
+
value = attn.to_v(encoder_hidden_states)
|
281 |
+
|
282 |
+
query = attn.head_to_batch_dim(query)
|
283 |
+
key = attn.head_to_batch_dim(key)
|
284 |
+
value = attn.head_to_batch_dim(value)
|
285 |
+
|
286 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
287 |
+
hidden_states = torch.bmm(attention_probs, value)
|
288 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
289 |
+
|
290 |
+
# for ip-adapter
|
291 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
292 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
293 |
+
|
294 |
+
# time-dependent adaLN
|
295 |
+
ip_key = self.ln_k_ip(ip_key, temb)
|
296 |
+
ip_value = self.ln_v_ip(ip_value, temb)
|
297 |
+
|
298 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
299 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
300 |
+
|
301 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
302 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
303 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
304 |
+
|
305 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
306 |
+
|
307 |
+
# linear proj
|
308 |
+
hidden_states = attn.to_out[0](hidden_states)
|
309 |
+
# dropout
|
310 |
+
hidden_states = attn.to_out[1](hidden_states)
|
311 |
+
|
312 |
+
if input_ndim == 4:
|
313 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
314 |
+
|
315 |
+
if attn.residual_connection:
|
316 |
+
hidden_states = hidden_states + residual
|
317 |
+
|
318 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
319 |
+
|
320 |
+
return hidden_states
|
321 |
+
|
322 |
+
|
323 |
+
class AttnProcessor2_0(torch.nn.Module):
|
324 |
+
r"""
|
325 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
326 |
+
"""
|
327 |
+
|
328 |
+
def __init__(
|
329 |
+
self,
|
330 |
+
hidden_size=None,
|
331 |
+
cross_attention_dim=None,
|
332 |
+
):
|
333 |
+
super().__init__()
|
334 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
335 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
336 |
+
|
337 |
+
def __call__(
|
338 |
+
self,
|
339 |
+
attn,
|
340 |
+
hidden_states,
|
341 |
+
encoder_hidden_states=None,
|
342 |
+
attention_mask=None,
|
343 |
+
external_kv=None,
|
344 |
+
temb=None,
|
345 |
+
):
|
346 |
+
residual = hidden_states
|
347 |
+
|
348 |
+
if attn.spatial_norm is not None:
|
349 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
350 |
+
|
351 |
+
input_ndim = hidden_states.ndim
|
352 |
+
|
353 |
+
if input_ndim == 4:
|
354 |
+
batch_size, channel, height, width = hidden_states.shape
|
355 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
356 |
+
|
357 |
+
batch_size, sequence_length, _ = (
|
358 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
359 |
+
)
|
360 |
+
|
361 |
+
if attention_mask is not None:
|
362 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
363 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
364 |
+
# (batch, heads, source_length, target_length)
|
365 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
366 |
+
|
367 |
+
if attn.group_norm is not None:
|
368 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
369 |
+
|
370 |
+
query = attn.to_q(hidden_states)
|
371 |
+
|
372 |
+
if encoder_hidden_states is None:
|
373 |
+
encoder_hidden_states = hidden_states
|
374 |
+
elif attn.norm_cross:
|
375 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
376 |
+
|
377 |
+
key = attn.to_k(encoder_hidden_states)
|
378 |
+
value = attn.to_v(encoder_hidden_states)
|
379 |
+
|
380 |
+
if external_kv:
|
381 |
+
key = torch.cat([key, external_kv.k], axis=1)
|
382 |
+
value = torch.cat([value, external_kv.v], axis=1)
|
383 |
+
|
384 |
+
inner_dim = key.shape[-1]
|
385 |
+
head_dim = inner_dim // attn.heads
|
386 |
+
|
387 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
388 |
+
|
389 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
390 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
391 |
+
|
392 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
393 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
394 |
+
hidden_states = F.scaled_dot_product_attention(
|
395 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
396 |
+
)
|
397 |
+
|
398 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
399 |
+
hidden_states = hidden_states.to(query.dtype)
|
400 |
+
|
401 |
+
# linear proj
|
402 |
+
hidden_states = attn.to_out[0](hidden_states)
|
403 |
+
# dropout
|
404 |
+
hidden_states = attn.to_out[1](hidden_states)
|
405 |
+
|
406 |
+
if input_ndim == 4:
|
407 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
408 |
+
|
409 |
+
if attn.residual_connection:
|
410 |
+
hidden_states = hidden_states + residual
|
411 |
+
|
412 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
413 |
+
|
414 |
+
return hidden_states
|
415 |
+
|
416 |
+
|
417 |
+
class split_AttnProcessor2_0(torch.nn.Module):
|
418 |
+
r"""
|
419 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(
|
423 |
+
self,
|
424 |
+
hidden_size=None,
|
425 |
+
cross_attention_dim=None,
|
426 |
+
time_embedding_dim=None,
|
427 |
+
):
|
428 |
+
super().__init__()
|
429 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
430 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
431 |
+
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
attn,
|
435 |
+
hidden_states,
|
436 |
+
encoder_hidden_states=None,
|
437 |
+
attention_mask=None,
|
438 |
+
external_kv=None,
|
439 |
+
temb=None,
|
440 |
+
cat_dim=-2,
|
441 |
+
original_shape=None,
|
442 |
+
):
|
443 |
+
residual = hidden_states
|
444 |
+
|
445 |
+
if attn.spatial_norm is not None:
|
446 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
447 |
+
|
448 |
+
input_ndim = hidden_states.ndim
|
449 |
+
|
450 |
+
if input_ndim == 4:
|
451 |
+
# 2d to sequence.
|
452 |
+
height, width = hidden_states.shape[-2:]
|
453 |
+
if cat_dim==-2 or cat_dim==2:
|
454 |
+
hidden_states_0 = hidden_states[:, :, :height//2, :]
|
455 |
+
hidden_states_1 = hidden_states[:, :, -(height//2):, :]
|
456 |
+
elif cat_dim==-1 or cat_dim==3:
|
457 |
+
hidden_states_0 = hidden_states[:, :, :, :width//2]
|
458 |
+
hidden_states_1 = hidden_states[:, :, :, -(width//2):]
|
459 |
+
batch_size, channel, height, width = hidden_states_0.shape
|
460 |
+
hidden_states_0 = hidden_states_0.view(batch_size, channel, height * width).transpose(1, 2)
|
461 |
+
hidden_states_1 = hidden_states_1.view(batch_size, channel, height * width).transpose(1, 2)
|
462 |
+
else:
|
463 |
+
# directly split sqeuence according to concat dim.
|
464 |
+
single_dim = original_shape[2] if cat_dim==-2 or cat_dim==2 else original_shape[1]
|
465 |
+
hidden_states_0 = hidden_states[:, :single_dim*single_dim,:]
|
466 |
+
hidden_states_1 = hidden_states[:, single_dim*(single_dim+1):,:]
|
467 |
+
|
468 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=1)
|
469 |
+
batch_size, sequence_length, _ = (
|
470 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
471 |
+
)
|
472 |
+
|
473 |
+
if attention_mask is not None:
|
474 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
475 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
476 |
+
# (batch, heads, source_length, target_length)
|
477 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
478 |
+
|
479 |
+
if attn.group_norm is not None:
|
480 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
481 |
+
|
482 |
+
query = attn.to_q(hidden_states)
|
483 |
+
key = attn.to_k(hidden_states)
|
484 |
+
value = attn.to_v(hidden_states)
|
485 |
+
|
486 |
+
if external_kv:
|
487 |
+
key = torch.cat([key, external_kv.k], dim=1)
|
488 |
+
value = torch.cat([value, external_kv.v], dim=1)
|
489 |
+
|
490 |
+
inner_dim = key.shape[-1]
|
491 |
+
head_dim = inner_dim // attn.heads
|
492 |
+
|
493 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
494 |
+
|
495 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
496 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
497 |
+
|
498 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
499 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
500 |
+
hidden_states = F.scaled_dot_product_attention(
|
501 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
502 |
+
)
|
503 |
+
|
504 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
505 |
+
hidden_states = hidden_states.to(query.dtype)
|
506 |
+
|
507 |
+
# linear proj
|
508 |
+
hidden_states = attn.to_out[0](hidden_states)
|
509 |
+
# dropout
|
510 |
+
hidden_states = attn.to_out[1](hidden_states)
|
511 |
+
|
512 |
+
# spatially split.
|
513 |
+
hidden_states_0, hidden_states_1 = hidden_states.chunk(2, dim=1)
|
514 |
+
|
515 |
+
if input_ndim == 4:
|
516 |
+
hidden_states_0 = hidden_states_0.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
517 |
+
hidden_states_1 = hidden_states_1.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
518 |
+
|
519 |
+
if cat_dim==-2 or cat_dim==2:
|
520 |
+
hidden_states_pad = torch.zeros(batch_size, channel, 1, width)
|
521 |
+
elif cat_dim==-1 or cat_dim==3:
|
522 |
+
hidden_states_pad = torch.zeros(batch_size, channel, height, 1)
|
523 |
+
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
|
524 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=cat_dim)
|
525 |
+
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
|
526 |
+
else:
|
527 |
+
batch_size, sequence_length, inner_dim = hidden_states.shape
|
528 |
+
hidden_states_pad = torch.zeros(batch_size, single_dim, inner_dim)
|
529 |
+
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
|
530 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=1)
|
531 |
+
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
|
532 |
+
|
533 |
+
if attn.residual_connection:
|
534 |
+
hidden_states = hidden_states + residual
|
535 |
+
|
536 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
537 |
+
|
538 |
+
return hidden_states
|
539 |
+
|
540 |
+
|
541 |
+
class sep_split_AttnProcessor2_0(torch.nn.Module):
|
542 |
+
r"""
|
543 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
544 |
+
"""
|
545 |
+
|
546 |
+
def __init__(
|
547 |
+
self,
|
548 |
+
hidden_size=None,
|
549 |
+
cross_attention_dim=None,
|
550 |
+
time_embedding_dim=None,
|
551 |
+
):
|
552 |
+
super().__init__()
|
553 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
554 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
555 |
+
self.ln_k_ref = AdaLayerNorm(hidden_size, time_embedding_dim)
|
556 |
+
self.ln_v_ref = AdaLayerNorm(hidden_size, time_embedding_dim)
|
557 |
+
# self.hidden_size = hidden_size
|
558 |
+
# self.cross_attention_dim = cross_attention_dim
|
559 |
+
# self.scale = scale
|
560 |
+
# self.num_tokens = num_tokens
|
561 |
+
|
562 |
+
# self.to_q_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
563 |
+
# self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
564 |
+
# self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
565 |
+
|
566 |
+
def __call__(
|
567 |
+
self,
|
568 |
+
attn,
|
569 |
+
hidden_states,
|
570 |
+
encoder_hidden_states=None,
|
571 |
+
attention_mask=None,
|
572 |
+
external_kv=None,
|
573 |
+
temb=None,
|
574 |
+
cat_dim=-2,
|
575 |
+
original_shape=None,
|
576 |
+
ref_scale=1.0,
|
577 |
+
):
|
578 |
+
residual = hidden_states
|
579 |
+
|
580 |
+
if attn.spatial_norm is not None:
|
581 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
582 |
+
|
583 |
+
input_ndim = hidden_states.ndim
|
584 |
+
|
585 |
+
if input_ndim == 4:
|
586 |
+
# 2d to sequence.
|
587 |
+
height, width = hidden_states.shape[-2:]
|
588 |
+
if cat_dim==-2 or cat_dim==2:
|
589 |
+
hidden_states_0 = hidden_states[:, :, :height//2, :]
|
590 |
+
hidden_states_1 = hidden_states[:, :, -(height//2):, :]
|
591 |
+
elif cat_dim==-1 or cat_dim==3:
|
592 |
+
hidden_states_0 = hidden_states[:, :, :, :width//2]
|
593 |
+
hidden_states_1 = hidden_states[:, :, :, -(width//2):]
|
594 |
+
batch_size, channel, height, width = hidden_states_0.shape
|
595 |
+
hidden_states_0 = hidden_states_0.view(batch_size, channel, height * width).transpose(1, 2)
|
596 |
+
hidden_states_1 = hidden_states_1.view(batch_size, channel, height * width).transpose(1, 2)
|
597 |
+
else:
|
598 |
+
# directly split sqeuence according to concat dim.
|
599 |
+
single_dim = original_shape[2] if cat_dim==-2 or cat_dim==2 else original_shape[1]
|
600 |
+
hidden_states_0 = hidden_states[:, :single_dim*single_dim,:]
|
601 |
+
hidden_states_1 = hidden_states[:, single_dim*(single_dim+1):,:]
|
602 |
+
|
603 |
+
batch_size, sequence_length, _ = (
|
604 |
+
hidden_states_0.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
605 |
+
)
|
606 |
+
|
607 |
+
if attention_mask is not None:
|
608 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
609 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
610 |
+
# (batch, heads, source_length, target_length)
|
611 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
612 |
+
|
613 |
+
if attn.group_norm is not None:
|
614 |
+
hidden_states_0 = attn.group_norm(hidden_states_0.transpose(1, 2)).transpose(1, 2)
|
615 |
+
hidden_states_1 = attn.group_norm(hidden_states_1.transpose(1, 2)).transpose(1, 2)
|
616 |
+
|
617 |
+
query_0 = attn.to_q(hidden_states_0)
|
618 |
+
query_1 = attn.to_q(hidden_states_1)
|
619 |
+
key_0 = attn.to_k(hidden_states_0)
|
620 |
+
key_1 = attn.to_k(hidden_states_1)
|
621 |
+
value_0 = attn.to_v(hidden_states_0)
|
622 |
+
value_1 = attn.to_v(hidden_states_1)
|
623 |
+
|
624 |
+
# time-dependent adaLN
|
625 |
+
key_1 = self.ln_k_ref(key_1, temb)
|
626 |
+
value_1 = self.ln_v_ref(value_1, temb)
|
627 |
+
|
628 |
+
if external_kv:
|
629 |
+
key_1 = torch.cat([key_1, external_kv.k], dim=1)
|
630 |
+
value_1 = torch.cat([value_1, external_kv.v], dim=1)
|
631 |
+
|
632 |
+
inner_dim = key_0.shape[-1]
|
633 |
+
head_dim = inner_dim // attn.heads
|
634 |
+
|
635 |
+
query_0 = query_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
636 |
+
query_1 = query_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
637 |
+
key_0 = key_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
638 |
+
key_1 = key_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
639 |
+
value_0 = value_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
640 |
+
value_1 = value_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
641 |
+
|
642 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
643 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
644 |
+
hidden_states_0 = F.scaled_dot_product_attention(
|
645 |
+
query_0, key_0, value_0, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
646 |
+
)
|
647 |
+
hidden_states_1 = F.scaled_dot_product_attention(
|
648 |
+
query_1, key_1, value_1, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
649 |
+
)
|
650 |
+
|
651 |
+
# cross-attn
|
652 |
+
_hidden_states_0 = F.scaled_dot_product_attention(
|
653 |
+
query_0, key_1, value_1, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
654 |
+
)
|
655 |
+
hidden_states_0 = hidden_states_0 + ref_scale * _hidden_states_0 * 10
|
656 |
+
|
657 |
+
# TODO: drop this cross-attn
|
658 |
+
_hidden_states_1 = F.scaled_dot_product_attention(
|
659 |
+
query_1, key_0, value_0, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
660 |
+
)
|
661 |
+
hidden_states_1 = hidden_states_1 + ref_scale * _hidden_states_1
|
662 |
+
|
663 |
+
hidden_states_0 = hidden_states_0.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
664 |
+
hidden_states_1 = hidden_states_1.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
665 |
+
hidden_states_0 = hidden_states_0.to(query_0.dtype)
|
666 |
+
hidden_states_1 = hidden_states_1.to(query_1.dtype)
|
667 |
+
|
668 |
+
|
669 |
+
# linear proj
|
670 |
+
hidden_states_0 = attn.to_out[0](hidden_states_0)
|
671 |
+
hidden_states_1 = attn.to_out[0](hidden_states_1)
|
672 |
+
# dropout
|
673 |
+
hidden_states_0 = attn.to_out[1](hidden_states_0)
|
674 |
+
hidden_states_1 = attn.to_out[1](hidden_states_1)
|
675 |
+
|
676 |
+
|
677 |
+
if input_ndim == 4:
|
678 |
+
hidden_states_0 = hidden_states_0.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
679 |
+
hidden_states_1 = hidden_states_1.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
680 |
+
|
681 |
+
if cat_dim==-2 or cat_dim==2:
|
682 |
+
hidden_states_pad = torch.zeros(batch_size, channel, 1, width)
|
683 |
+
elif cat_dim==-1 or cat_dim==3:
|
684 |
+
hidden_states_pad = torch.zeros(batch_size, channel, height, 1)
|
685 |
+
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
|
686 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=cat_dim)
|
687 |
+
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
|
688 |
+
else:
|
689 |
+
batch_size, sequence_length, inner_dim = hidden_states.shape
|
690 |
+
hidden_states_pad = torch.zeros(batch_size, single_dim, inner_dim)
|
691 |
+
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
|
692 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=1)
|
693 |
+
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
|
694 |
+
|
695 |
+
if attn.residual_connection:
|
696 |
+
hidden_states = hidden_states + residual
|
697 |
+
|
698 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
699 |
+
|
700 |
+
return hidden_states
|
701 |
+
|
702 |
+
|
703 |
+
class AdditiveKV_AttnProcessor2_0(torch.nn.Module):
|
704 |
+
r"""
|
705 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
706 |
+
"""
|
707 |
+
|
708 |
+
def __init__(
|
709 |
+
self,
|
710 |
+
hidden_size: int = None,
|
711 |
+
cross_attention_dim: int = None,
|
712 |
+
time_embedding_dim: int = None,
|
713 |
+
additive_scale: float = 1.0,
|
714 |
+
):
|
715 |
+
super().__init__()
|
716 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
717 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
718 |
+
self.additive_scale = additive_scale
|
719 |
+
|
720 |
+
def __call__(
|
721 |
+
self,
|
722 |
+
attn,
|
723 |
+
hidden_states,
|
724 |
+
encoder_hidden_states=None,
|
725 |
+
external_kv=None,
|
726 |
+
attention_mask=None,
|
727 |
+
temb=None,
|
728 |
+
):
|
729 |
+
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
|
730 |
+
|
731 |
+
residual = hidden_states
|
732 |
+
|
733 |
+
if attn.spatial_norm is not None:
|
734 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
735 |
+
|
736 |
+
input_ndim = hidden_states.ndim
|
737 |
+
|
738 |
+
if input_ndim == 4:
|
739 |
+
batch_size, channel, height, width = hidden_states.shape
|
740 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
741 |
+
|
742 |
+
batch_size, sequence_length, _ = (
|
743 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
744 |
+
)
|
745 |
+
|
746 |
+
if attention_mask is not None:
|
747 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
748 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
749 |
+
# (batch, heads, source_length, target_length)
|
750 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
751 |
+
|
752 |
+
if attn.group_norm is not None:
|
753 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
754 |
+
|
755 |
+
query = attn.to_q(hidden_states)
|
756 |
+
|
757 |
+
if encoder_hidden_states is None:
|
758 |
+
encoder_hidden_states = hidden_states
|
759 |
+
elif attn.norm_cross:
|
760 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
761 |
+
|
762 |
+
key = attn.to_k(encoder_hidden_states)
|
763 |
+
value = attn.to_v(encoder_hidden_states)
|
764 |
+
|
765 |
+
inner_dim = key.shape[-1]
|
766 |
+
head_dim = inner_dim // attn.heads
|
767 |
+
|
768 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
769 |
+
|
770 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
771 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
772 |
+
|
773 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
774 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
775 |
+
hidden_states = F.scaled_dot_product_attention(
|
776 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
777 |
+
)
|
778 |
+
|
779 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
780 |
+
|
781 |
+
if external_kv:
|
782 |
+
key = external_kv.k
|
783 |
+
value = external_kv.v
|
784 |
+
|
785 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
786 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
787 |
+
|
788 |
+
external_attn_output = F.scaled_dot_product_attention(
|
789 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
790 |
+
)
|
791 |
+
|
792 |
+
external_attn_output = external_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
793 |
+
hidden_states = hidden_states + self.additive_scale * external_attn_output
|
794 |
+
|
795 |
+
hidden_states = hidden_states.to(query.dtype)
|
796 |
+
|
797 |
+
# linear proj
|
798 |
+
hidden_states = attn.to_out[0](hidden_states)
|
799 |
+
# dropout
|
800 |
+
hidden_states = attn.to_out[1](hidden_states)
|
801 |
+
|
802 |
+
if input_ndim == 4:
|
803 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
804 |
+
|
805 |
+
if attn.residual_connection:
|
806 |
+
hidden_states = hidden_states + residual
|
807 |
+
|
808 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
809 |
+
|
810 |
+
return hidden_states
|
811 |
+
|
812 |
+
|
813 |
+
class TA_AdditiveKV_AttnProcessor2_0(torch.nn.Module):
|
814 |
+
r"""
|
815 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
816 |
+
"""
|
817 |
+
|
818 |
+
def __init__(
|
819 |
+
self,
|
820 |
+
hidden_size: int = None,
|
821 |
+
cross_attention_dim: int = None,
|
822 |
+
time_embedding_dim: int = None,
|
823 |
+
additive_scale: float = 1.0,
|
824 |
+
):
|
825 |
+
super().__init__()
|
826 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
827 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
828 |
+
self.ln_k = AdaLayerNorm(hidden_size, time_embedding_dim)
|
829 |
+
self.ln_v = AdaLayerNorm(hidden_size, time_embedding_dim)
|
830 |
+
self.additive_scale = additive_scale
|
831 |
+
|
832 |
+
def __call__(
|
833 |
+
self,
|
834 |
+
attn,
|
835 |
+
hidden_states,
|
836 |
+
encoder_hidden_states=None,
|
837 |
+
external_kv=None,
|
838 |
+
attention_mask=None,
|
839 |
+
temb=None,
|
840 |
+
):
|
841 |
+
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
|
842 |
+
|
843 |
+
residual = hidden_states
|
844 |
+
|
845 |
+
if attn.spatial_norm is not None:
|
846 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
847 |
+
|
848 |
+
input_ndim = hidden_states.ndim
|
849 |
+
|
850 |
+
if input_ndim == 4:
|
851 |
+
batch_size, channel, height, width = hidden_states.shape
|
852 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
853 |
+
|
854 |
+
batch_size, sequence_length, _ = (
|
855 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
856 |
+
)
|
857 |
+
|
858 |
+
if attention_mask is not None:
|
859 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
860 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
861 |
+
# (batch, heads, source_length, target_length)
|
862 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
863 |
+
|
864 |
+
if attn.group_norm is not None:
|
865 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
866 |
+
|
867 |
+
query = attn.to_q(hidden_states)
|
868 |
+
|
869 |
+
if encoder_hidden_states is None:
|
870 |
+
encoder_hidden_states = hidden_states
|
871 |
+
elif attn.norm_cross:
|
872 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
873 |
+
|
874 |
+
key = attn.to_k(encoder_hidden_states)
|
875 |
+
value = attn.to_v(encoder_hidden_states)
|
876 |
+
|
877 |
+
inner_dim = key.shape[-1]
|
878 |
+
head_dim = inner_dim // attn.heads
|
879 |
+
|
880 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
881 |
+
|
882 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
883 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
884 |
+
|
885 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
886 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
887 |
+
hidden_states = F.scaled_dot_product_attention(
|
888 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
889 |
+
)
|
890 |
+
|
891 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
892 |
+
|
893 |
+
if external_kv:
|
894 |
+
key = external_kv.k
|
895 |
+
value = external_kv.v
|
896 |
+
|
897 |
+
# time-dependent adaLN
|
898 |
+
key = self.ln_k(key, temb)
|
899 |
+
value = self.ln_v(value, temb)
|
900 |
+
|
901 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
902 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
903 |
+
|
904 |
+
external_attn_output = F.scaled_dot_product_attention(
|
905 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
906 |
+
)
|
907 |
+
|
908 |
+
external_attn_output = external_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
909 |
+
hidden_states = hidden_states + self.additive_scale * external_attn_output
|
910 |
+
|
911 |
+
hidden_states = hidden_states.to(query.dtype)
|
912 |
+
|
913 |
+
# linear proj
|
914 |
+
hidden_states = attn.to_out[0](hidden_states)
|
915 |
+
# dropout
|
916 |
+
hidden_states = attn.to_out[1](hidden_states)
|
917 |
+
|
918 |
+
if input_ndim == 4:
|
919 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
920 |
+
|
921 |
+
if attn.residual_connection:
|
922 |
+
hidden_states = hidden_states + residual
|
923 |
+
|
924 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
925 |
+
|
926 |
+
return hidden_states
|
927 |
+
|
928 |
+
|
929 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
930 |
+
r"""
|
931 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
932 |
+
Args:
|
933 |
+
hidden_size (`int`):
|
934 |
+
The hidden size of the attention layer.
|
935 |
+
cross_attention_dim (`int`):
|
936 |
+
The number of channels in the `encoder_hidden_states`.
|
937 |
+
scale (`float`, defaults to 1.0):
|
938 |
+
the weight scale of image prompt.
|
939 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
940 |
+
The context length of the image features.
|
941 |
+
"""
|
942 |
+
|
943 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
944 |
+
super().__init__()
|
945 |
+
|
946 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
947 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
948 |
+
|
949 |
+
self.hidden_size = hidden_size
|
950 |
+
self.cross_attention_dim = cross_attention_dim
|
951 |
+
self.scale = scale
|
952 |
+
self.num_tokens = num_tokens
|
953 |
+
|
954 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
955 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
956 |
+
|
957 |
+
def __call__(
|
958 |
+
self,
|
959 |
+
attn,
|
960 |
+
hidden_states,
|
961 |
+
encoder_hidden_states=None,
|
962 |
+
attention_mask=None,
|
963 |
+
temb=None,
|
964 |
+
):
|
965 |
+
residual = hidden_states
|
966 |
+
|
967 |
+
if attn.spatial_norm is not None:
|
968 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
969 |
+
|
970 |
+
input_ndim = hidden_states.ndim
|
971 |
+
|
972 |
+
if input_ndim == 4:
|
973 |
+
batch_size, channel, height, width = hidden_states.shape
|
974 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
975 |
+
|
976 |
+
if isinstance(encoder_hidden_states, tuple):
|
977 |
+
# FIXME: now hard coded to single image prompt.
|
978 |
+
batch_size, _, hid_dim = encoder_hidden_states[0].shape
|
979 |
+
ip_tokens = encoder_hidden_states[1][0]
|
980 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states[0], ip_tokens], dim=1)
|
981 |
+
|
982 |
+
batch_size, sequence_length, _ = (
|
983 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
984 |
+
)
|
985 |
+
|
986 |
+
if attention_mask is not None:
|
987 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
988 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
989 |
+
# (batch, heads, source_length, target_length)
|
990 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
991 |
+
|
992 |
+
if attn.group_norm is not None:
|
993 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
994 |
+
|
995 |
+
query = attn.to_q(hidden_states)
|
996 |
+
|
997 |
+
if encoder_hidden_states is None:
|
998 |
+
encoder_hidden_states = hidden_states
|
999 |
+
else:
|
1000 |
+
# get encoder_hidden_states, ip_hidden_states
|
1001 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
1002 |
+
encoder_hidden_states, ip_hidden_states = (
|
1003 |
+
encoder_hidden_states[:, :end_pos, :],
|
1004 |
+
encoder_hidden_states[:, end_pos:, :],
|
1005 |
+
)
|
1006 |
+
if attn.norm_cross:
|
1007 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1008 |
+
|
1009 |
+
key = attn.to_k(encoder_hidden_states)
|
1010 |
+
value = attn.to_v(encoder_hidden_states)
|
1011 |
+
|
1012 |
+
inner_dim = key.shape[-1]
|
1013 |
+
head_dim = inner_dim // attn.heads
|
1014 |
+
|
1015 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1016 |
+
|
1017 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1018 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1019 |
+
|
1020 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1021 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1022 |
+
hidden_states = F.scaled_dot_product_attention(
|
1023 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1027 |
+
hidden_states = hidden_states.to(query.dtype)
|
1028 |
+
|
1029 |
+
# for ip-adapter
|
1030 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
1031 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
1032 |
+
|
1033 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1034 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1035 |
+
|
1036 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1037 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1038 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
1039 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1043 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
1044 |
+
|
1045 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
1046 |
+
|
1047 |
+
# linear proj
|
1048 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1049 |
+
# dropout
|
1050 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1051 |
+
|
1052 |
+
if input_ndim == 4:
|
1053 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1054 |
+
|
1055 |
+
if attn.residual_connection:
|
1056 |
+
hidden_states = hidden_states + residual
|
1057 |
+
|
1058 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1059 |
+
|
1060 |
+
return hidden_states
|
1061 |
+
|
1062 |
+
|
1063 |
+
class TA_IPAttnProcessor2_0(torch.nn.Module):
|
1064 |
+
r"""
|
1065 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
1066 |
+
Args:
|
1067 |
+
hidden_size (`int`):
|
1068 |
+
The hidden size of the attention layer.
|
1069 |
+
cross_attention_dim (`int`):
|
1070 |
+
The number of channels in the `encoder_hidden_states`.
|
1071 |
+
scale (`float`, defaults to 1.0):
|
1072 |
+
the weight scale of image prompt.
|
1073 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
1074 |
+
The context length of the image features.
|
1075 |
+
"""
|
1076 |
+
|
1077 |
+
def __init__(self, hidden_size, cross_attention_dim=None, time_embedding_dim: int = None, scale=1.0, num_tokens=4):
|
1078 |
+
super().__init__()
|
1079 |
+
|
1080 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
1081 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
1082 |
+
|
1083 |
+
self.hidden_size = hidden_size
|
1084 |
+
self.cross_attention_dim = cross_attention_dim
|
1085 |
+
self.scale = scale
|
1086 |
+
self.num_tokens = num_tokens
|
1087 |
+
|
1088 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
1089 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
1090 |
+
self.ln_k_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
|
1091 |
+
self.ln_v_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
|
1092 |
+
|
1093 |
+
def __call__(
|
1094 |
+
self,
|
1095 |
+
attn,
|
1096 |
+
hidden_states,
|
1097 |
+
encoder_hidden_states=None,
|
1098 |
+
attention_mask=None,
|
1099 |
+
external_kv=None,
|
1100 |
+
temb=None,
|
1101 |
+
):
|
1102 |
+
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
|
1103 |
+
|
1104 |
+
residual = hidden_states
|
1105 |
+
|
1106 |
+
if attn.spatial_norm is not None:
|
1107 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1108 |
+
|
1109 |
+
input_ndim = hidden_states.ndim
|
1110 |
+
|
1111 |
+
if input_ndim == 4:
|
1112 |
+
batch_size, channel, height, width = hidden_states.shape
|
1113 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1114 |
+
|
1115 |
+
if not isinstance(encoder_hidden_states, tuple):
|
1116 |
+
# get encoder_hidden_states, ip_hidden_states
|
1117 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
1118 |
+
encoder_hidden_states, ip_hidden_states = (
|
1119 |
+
encoder_hidden_states[:, :end_pos, :],
|
1120 |
+
encoder_hidden_states[:, end_pos:, :],
|
1121 |
+
)
|
1122 |
+
else:
|
1123 |
+
# FIXME: now hard coded to single image prompt.
|
1124 |
+
batch_size, _, hid_dim = encoder_hidden_states[0].shape
|
1125 |
+
ip_hidden_states = encoder_hidden_states[1][0]
|
1126 |
+
encoder_hidden_states = encoder_hidden_states[0]
|
1127 |
+
batch_size, sequence_length, _ = (
|
1128 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
if attention_mask is not None:
|
1132 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1133 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1134 |
+
# (batch, heads, source_length, target_length)
|
1135 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
1136 |
+
|
1137 |
+
if attn.group_norm is not None:
|
1138 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1139 |
+
|
1140 |
+
query = attn.to_q(hidden_states)
|
1141 |
+
|
1142 |
+
if encoder_hidden_states is None:
|
1143 |
+
encoder_hidden_states = hidden_states
|
1144 |
+
else:
|
1145 |
+
if attn.norm_cross:
|
1146 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1147 |
+
|
1148 |
+
key = attn.to_k(encoder_hidden_states)
|
1149 |
+
value = attn.to_v(encoder_hidden_states)
|
1150 |
+
|
1151 |
+
if external_kv:
|
1152 |
+
key = torch.cat([key, external_kv.k], axis=1)
|
1153 |
+
value = torch.cat([value, external_kv.v], axis=1)
|
1154 |
+
|
1155 |
+
inner_dim = key.shape[-1]
|
1156 |
+
head_dim = inner_dim // attn.heads
|
1157 |
+
|
1158 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1159 |
+
|
1160 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1161 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1162 |
+
|
1163 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1164 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1165 |
+
hidden_states = F.scaled_dot_product_attention(
|
1166 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1170 |
+
hidden_states = hidden_states.to(query.dtype)
|
1171 |
+
|
1172 |
+
# for ip-adapter
|
1173 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
1174 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
1175 |
+
|
1176 |
+
# time-dependent adaLN
|
1177 |
+
ip_key = self.ln_k_ip(ip_key, temb)
|
1178 |
+
ip_value = self.ln_v_ip(ip_value, temb)
|
1179 |
+
|
1180 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1181 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1182 |
+
|
1183 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1184 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1185 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
1186 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1190 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
1191 |
+
|
1192 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
1193 |
+
|
1194 |
+
# linear proj
|
1195 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1196 |
+
# dropout
|
1197 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1198 |
+
|
1199 |
+
if input_ndim == 4:
|
1200 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1201 |
+
|
1202 |
+
if attn.residual_connection:
|
1203 |
+
hidden_states = hidden_states + residual
|
1204 |
+
|
1205 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1206 |
+
|
1207 |
+
return hidden_states
|
1208 |
+
|
1209 |
+
|
1210 |
+
## for controlnet
|
1211 |
+
class CNAttnProcessor:
|
1212 |
+
r"""
|
1213 |
+
Default processor for performing attention-related computations.
|
1214 |
+
"""
|
1215 |
+
|
1216 |
+
def __init__(self, num_tokens=4):
|
1217 |
+
self.num_tokens = num_tokens
|
1218 |
+
|
1219 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
1220 |
+
residual = hidden_states
|
1221 |
+
|
1222 |
+
if attn.spatial_norm is not None:
|
1223 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1224 |
+
|
1225 |
+
input_ndim = hidden_states.ndim
|
1226 |
+
|
1227 |
+
if input_ndim == 4:
|
1228 |
+
batch_size, channel, height, width = hidden_states.shape
|
1229 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1230 |
+
|
1231 |
+
batch_size, sequence_length, _ = (
|
1232 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1233 |
+
)
|
1234 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1235 |
+
|
1236 |
+
if attn.group_norm is not None:
|
1237 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1238 |
+
|
1239 |
+
query = attn.to_q(hidden_states)
|
1240 |
+
|
1241 |
+
if encoder_hidden_states is None:
|
1242 |
+
encoder_hidden_states = hidden_states
|
1243 |
+
else:
|
1244 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
1245 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
1246 |
+
if attn.norm_cross:
|
1247 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1248 |
+
|
1249 |
+
key = attn.to_k(encoder_hidden_states)
|
1250 |
+
value = attn.to_v(encoder_hidden_states)
|
1251 |
+
|
1252 |
+
query = attn.head_to_batch_dim(query)
|
1253 |
+
key = attn.head_to_batch_dim(key)
|
1254 |
+
value = attn.head_to_batch_dim(value)
|
1255 |
+
|
1256 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
1257 |
+
hidden_states = torch.bmm(attention_probs, value)
|
1258 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1259 |
+
|
1260 |
+
# linear proj
|
1261 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1262 |
+
# dropout
|
1263 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1264 |
+
|
1265 |
+
if input_ndim == 4:
|
1266 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1267 |
+
|
1268 |
+
if attn.residual_connection:
|
1269 |
+
hidden_states = hidden_states + residual
|
1270 |
+
|
1271 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1272 |
+
|
1273 |
+
return hidden_states
|
1274 |
+
|
1275 |
+
|
1276 |
+
class CNAttnProcessor2_0:
|
1277 |
+
r"""
|
1278 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
1279 |
+
"""
|
1280 |
+
|
1281 |
+
def __init__(self, num_tokens=4):
|
1282 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
1283 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
1284 |
+
self.num_tokens = num_tokens
|
1285 |
+
|
1286 |
+
def __call__(
|
1287 |
+
self,
|
1288 |
+
attn,
|
1289 |
+
hidden_states,
|
1290 |
+
encoder_hidden_states=None,
|
1291 |
+
attention_mask=None,
|
1292 |
+
temb=None,
|
1293 |
+
):
|
1294 |
+
residual = hidden_states
|
1295 |
+
|
1296 |
+
if attn.spatial_norm is not None:
|
1297 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1298 |
+
|
1299 |
+
input_ndim = hidden_states.ndim
|
1300 |
+
|
1301 |
+
if input_ndim == 4:
|
1302 |
+
batch_size, channel, height, width = hidden_states.shape
|
1303 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1304 |
+
|
1305 |
+
batch_size, sequence_length, _ = (
|
1306 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
if attention_mask is not None:
|
1310 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1311 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1312 |
+
# (batch, heads, source_length, target_length)
|
1313 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
1314 |
+
|
1315 |
+
if attn.group_norm is not None:
|
1316 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1317 |
+
|
1318 |
+
query = attn.to_q(hidden_states)
|
1319 |
+
|
1320 |
+
if encoder_hidden_states is None:
|
1321 |
+
encoder_hidden_states = hidden_states
|
1322 |
+
else:
|
1323 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
1324 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
1325 |
+
if attn.norm_cross:
|
1326 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1327 |
+
|
1328 |
+
key = attn.to_k(encoder_hidden_states)
|
1329 |
+
value = attn.to_v(encoder_hidden_states)
|
1330 |
+
|
1331 |
+
inner_dim = key.shape[-1]
|
1332 |
+
head_dim = inner_dim // attn.heads
|
1333 |
+
|
1334 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1335 |
+
|
1336 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1337 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1338 |
+
|
1339 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1340 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1341 |
+
hidden_states = F.scaled_dot_product_attention(
|
1342 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1343 |
+
)
|
1344 |
+
|
1345 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1346 |
+
hidden_states = hidden_states.to(query.dtype)
|
1347 |
+
|
1348 |
+
# linear proj
|
1349 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1350 |
+
# dropout
|
1351 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1352 |
+
|
1353 |
+
if input_ndim == 4:
|
1354 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1355 |
+
|
1356 |
+
if attn.residual_connection:
|
1357 |
+
hidden_states = hidden_states + residual
|
1358 |
+
|
1359 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1360 |
+
|
1361 |
+
return hidden_states
|
1362 |
+
|
1363 |
+
|
1364 |
+
def init_attn_proc(unet, ip_adapter_tokens=16, use_lcm=False, use_adaln=True, use_external_kv=False):
|
1365 |
+
attn_procs = {}
|
1366 |
+
unet_sd = unet.state_dict()
|
1367 |
+
for name in unet.attn_processors.keys():
|
1368 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
1369 |
+
if name.startswith("mid_block"):
|
1370 |
+
hidden_size = unet.config.block_out_channels[-1]
|
1371 |
+
elif name.startswith("up_blocks"):
|
1372 |
+
block_id = int(name[len("up_blocks.")])
|
1373 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
1374 |
+
elif name.startswith("down_blocks"):
|
1375 |
+
block_id = int(name[len("down_blocks.")])
|
1376 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
1377 |
+
if cross_attention_dim is None:
|
1378 |
+
if use_external_kv:
|
1379 |
+
attn_procs[name] = AdditiveKV_AttnProcessor2_0(
|
1380 |
+
hidden_size=hidden_size,
|
1381 |
+
cross_attention_dim=cross_attention_dim,
|
1382 |
+
time_embedding_dim=1280,
|
1383 |
+
) if hasattr(F, "scaled_dot_product_attention") else AdditiveKV_AttnProcessor()
|
1384 |
+
else:
|
1385 |
+
attn_procs[name] = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
|
1386 |
+
else:
|
1387 |
+
if use_adaln:
|
1388 |
+
layer_name = name.split(".processor")[0]
|
1389 |
+
if use_lcm:
|
1390 |
+
weights = {
|
1391 |
+
"to_k_ip.weight": unet_sd[layer_name + ".to_k.base_layer.weight"],
|
1392 |
+
"to_v_ip.weight": unet_sd[layer_name + ".to_v.base_layer.weight"],
|
1393 |
+
}
|
1394 |
+
else:
|
1395 |
+
weights = {
|
1396 |
+
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
|
1397 |
+
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
|
1398 |
+
}
|
1399 |
+
attn_procs[name] = TA_IPAttnProcessor2_0(
|
1400 |
+
hidden_size=hidden_size,
|
1401 |
+
cross_attention_dim=cross_attention_dim,
|
1402 |
+
num_tokens=ip_adapter_tokens,
|
1403 |
+
time_embedding_dim=1280,
|
1404 |
+
) if hasattr(F, "scaled_dot_product_attention") else \
|
1405 |
+
TA_IPAttnProcessor(
|
1406 |
+
hidden_size=hidden_size,
|
1407 |
+
cross_attention_dim=cross_attention_dim,
|
1408 |
+
num_tokens=ip_adapter_tokens,
|
1409 |
+
time_embedding_dim=1280,
|
1410 |
+
)
|
1411 |
+
attn_procs[name].load_state_dict(weights, strict=False)
|
1412 |
+
else:
|
1413 |
+
attn_procs[name] = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
|
1414 |
+
|
1415 |
+
return attn_procs
|
1416 |
+
|
1417 |
+
|
1418 |
+
def init_aggregator_attn_proc(unet, use_adaln=False, split_attn=False):
|
1419 |
+
attn_procs = {}
|
1420 |
+
unet_sd = unet.state_dict()
|
1421 |
+
for name in unet.attn_processors.keys():
|
1422 |
+
# get layer name and hidden dim
|
1423 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
1424 |
+
if name.startswith("mid_block"):
|
1425 |
+
hidden_size = unet.config.block_out_channels[-1]
|
1426 |
+
elif name.startswith("up_blocks"):
|
1427 |
+
block_id = int(name[len("up_blocks.")])
|
1428 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
1429 |
+
elif name.startswith("down_blocks"):
|
1430 |
+
block_id = int(name[len("down_blocks.")])
|
1431 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
1432 |
+
# init attn proc
|
1433 |
+
if split_attn:
|
1434 |
+
# layer_name = name.split(".processor")[0]
|
1435 |
+
# weights = {
|
1436 |
+
# "to_q_ref.weight": unet_sd[layer_name + ".to_q.weight"],
|
1437 |
+
# "to_k_ref.weight": unet_sd[layer_name + ".to_k.weight"],
|
1438 |
+
# "to_v_ref.weight": unet_sd[layer_name + ".to_v.weight"],
|
1439 |
+
# }
|
1440 |
+
attn_procs[name] = (
|
1441 |
+
sep_split_AttnProcessor2_0(
|
1442 |
+
hidden_size=hidden_size,
|
1443 |
+
cross_attention_dim=hidden_size,
|
1444 |
+
time_embedding_dim=1280,
|
1445 |
+
)
|
1446 |
+
if use_adaln
|
1447 |
+
else split_AttnProcessor2_0(
|
1448 |
+
hidden_size=hidden_size,
|
1449 |
+
cross_attention_dim=cross_attention_dim,
|
1450 |
+
time_embedding_dim=1280,
|
1451 |
+
)
|
1452 |
+
)
|
1453 |
+
# attn_procs[name].load_state_dict(weights, strict=False)
|
1454 |
+
else:
|
1455 |
+
attn_procs[name] = (
|
1456 |
+
AttnProcessor2_0(
|
1457 |
+
hidden_size=hidden_size,
|
1458 |
+
cross_attention_dim=hidden_size,
|
1459 |
+
)
|
1460 |
+
if hasattr(F, "scaled_dot_product_attention")
|
1461 |
+
else AttnProcessor(
|
1462 |
+
hidden_size=hidden_size,
|
1463 |
+
cross_attention_dim=hidden_size,
|
1464 |
+
)
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
return attn_procs
|