Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create utils/degradation_pipeline.py
Browse files- utils/degradation_pipeline.py +353 -0
utils/degradation_pipeline.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from torch.utils import data as data
|
7 |
+
|
8 |
+
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
|
9 |
+
from basicsr.data.transforms import augment
|
10 |
+
from basicsr.utils import img2tensor, DiffJPEG, USMSharp
|
11 |
+
from basicsr.utils.img_process_util import filter2D
|
12 |
+
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
|
13 |
+
from basicsr.data.transforms import paired_random_crop
|
14 |
+
|
15 |
+
AUGMENT_OPT = {
|
16 |
+
'use_hflip': False,
|
17 |
+
'use_rot': False
|
18 |
+
}
|
19 |
+
|
20 |
+
KERNEL_OPT = {
|
21 |
+
'blur_kernel_size': 21,
|
22 |
+
'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
|
23 |
+
'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
|
24 |
+
'sinc_prob': 0.1,
|
25 |
+
'blur_sigma': [0.2, 3],
|
26 |
+
'betag_range': [0.5, 4],
|
27 |
+
'betap_range': [1, 2],
|
28 |
+
|
29 |
+
'blur_kernel_size2': 21,
|
30 |
+
'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
|
31 |
+
'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
|
32 |
+
'sinc_prob2': 0.1,
|
33 |
+
'blur_sigma2': [0.2, 1.5],
|
34 |
+
'betag_range2': [0.5, 4],
|
35 |
+
'betap_range2': [1, 2],
|
36 |
+
'final_sinc_prob': 0.8,
|
37 |
+
}
|
38 |
+
|
39 |
+
DEGRADE_OPT = {
|
40 |
+
'resize_prob': [0.2, 0.7, 0.1], # up, down, keep
|
41 |
+
'resize_range': [0.15, 1.5],
|
42 |
+
'gaussian_noise_prob': 0.5,
|
43 |
+
'noise_range': [1, 30],
|
44 |
+
'poisson_scale_range': [0.05, 3],
|
45 |
+
'gray_noise_prob': 0.4,
|
46 |
+
'jpeg_range': [30, 95],
|
47 |
+
|
48 |
+
# the second degradation process
|
49 |
+
'second_blur_prob': 0.8,
|
50 |
+
'resize_prob2': [0.3, 0.4, 0.3], # up, down, keep
|
51 |
+
'resize_range2': [0.3, 1.2],
|
52 |
+
'gaussian_noise_prob2': 0.5,
|
53 |
+
'noise_range2': [1, 25],
|
54 |
+
'poisson_scale_range2': [0.05, 2.5],
|
55 |
+
'gray_noise_prob2': 0.4,
|
56 |
+
'jpeg_range2': [30, 95],
|
57 |
+
|
58 |
+
'gt_size': 512,
|
59 |
+
'no_degradation_prob': 0.01,
|
60 |
+
'use_usm': True,
|
61 |
+
'sf': 4,
|
62 |
+
'random_size': False,
|
63 |
+
'resize_lq': True
|
64 |
+
}
|
65 |
+
|
66 |
+
class RealESRGANDegradation:
|
67 |
+
|
68 |
+
def __init__(self, augment_opt=None, kernel_opt=None, degrade_opt=None, device='cuda', resolution=None):
|
69 |
+
if augment_opt is None:
|
70 |
+
augment_opt = AUGMENT_OPT
|
71 |
+
self.augment_opt = augment_opt
|
72 |
+
if kernel_opt is None:
|
73 |
+
kernel_opt = KERNEL_OPT
|
74 |
+
self.kernel_opt = kernel_opt
|
75 |
+
if degrade_opt is None:
|
76 |
+
degrade_opt = DEGRADE_OPT
|
77 |
+
self.degrade_opt = degrade_opt
|
78 |
+
if resolution is not None:
|
79 |
+
self.degrade_opt['gt_size'] = resolution
|
80 |
+
self.device = device
|
81 |
+
|
82 |
+
self.jpeger = DiffJPEG(differentiable=False).to(self.device)
|
83 |
+
self.usm_sharpener = USMSharp().to(self.device)
|
84 |
+
|
85 |
+
# blur settings for the first degradation
|
86 |
+
self.blur_kernel_size = kernel_opt['blur_kernel_size']
|
87 |
+
self.kernel_list = kernel_opt['kernel_list']
|
88 |
+
self.kernel_prob = kernel_opt['kernel_prob'] # a list for each kernel probability
|
89 |
+
self.blur_sigma = kernel_opt['blur_sigma']
|
90 |
+
self.betag_range = kernel_opt['betag_range'] # betag used in generalized Gaussian blur kernels
|
91 |
+
self.betap_range = kernel_opt['betap_range'] # betap used in plateau blur kernels
|
92 |
+
self.sinc_prob = kernel_opt['sinc_prob'] # the probability for sinc filters
|
93 |
+
|
94 |
+
# blur settings for the second degradation
|
95 |
+
self.blur_kernel_size2 = kernel_opt['blur_kernel_size2']
|
96 |
+
self.kernel_list2 = kernel_opt['kernel_list2']
|
97 |
+
self.kernel_prob2 = kernel_opt['kernel_prob2']
|
98 |
+
self.blur_sigma2 = kernel_opt['blur_sigma2']
|
99 |
+
self.betag_range2 = kernel_opt['betag_range2']
|
100 |
+
self.betap_range2 = kernel_opt['betap_range2']
|
101 |
+
self.sinc_prob2 = kernel_opt['sinc_prob2']
|
102 |
+
|
103 |
+
# a final sinc filter
|
104 |
+
self.final_sinc_prob = kernel_opt['final_sinc_prob']
|
105 |
+
|
106 |
+
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
|
107 |
+
# TODO: kernel range is now hard-coded, should be in the configure file
|
108 |
+
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
|
109 |
+
self.pulse_tensor[10, 10] = 1
|
110 |
+
|
111 |
+
def get_kernel(self):
|
112 |
+
|
113 |
+
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
|
114 |
+
kernel_size = random.choice(self.kernel_range)
|
115 |
+
if np.random.uniform() < self.kernel_opt['sinc_prob']:
|
116 |
+
# this sinc filter setting is for kernels ranging from [7, 21]
|
117 |
+
if kernel_size < 13:
|
118 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
119 |
+
else:
|
120 |
+
omega_c = np.random.uniform(np.pi / 5, np.pi)
|
121 |
+
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
|
122 |
+
else:
|
123 |
+
kernel = random_mixed_kernels(
|
124 |
+
self.kernel_list,
|
125 |
+
self.kernel_prob,
|
126 |
+
kernel_size,
|
127 |
+
self.blur_sigma,
|
128 |
+
self.blur_sigma, [-math.pi, math.pi],
|
129 |
+
self.betag_range,
|
130 |
+
self.betap_range,
|
131 |
+
noise_range=None)
|
132 |
+
# pad kernel
|
133 |
+
pad_size = (21 - kernel_size) // 2
|
134 |
+
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
|
135 |
+
|
136 |
+
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
|
137 |
+
kernel_size = random.choice(self.kernel_range)
|
138 |
+
if np.random.uniform() < self.kernel_opt['sinc_prob2']:
|
139 |
+
if kernel_size < 13:
|
140 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
141 |
+
else:
|
142 |
+
omega_c = np.random.uniform(np.pi / 5, np.pi)
|
143 |
+
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
|
144 |
+
else:
|
145 |
+
kernel2 = random_mixed_kernels(
|
146 |
+
self.kernel_list2,
|
147 |
+
self.kernel_prob2,
|
148 |
+
kernel_size,
|
149 |
+
self.blur_sigma2,
|
150 |
+
self.blur_sigma2, [-math.pi, math.pi],
|
151 |
+
self.betag_range2,
|
152 |
+
self.betap_range2,
|
153 |
+
noise_range=None)
|
154 |
+
|
155 |
+
# pad kernel
|
156 |
+
pad_size = (21 - kernel_size) // 2
|
157 |
+
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
|
158 |
+
|
159 |
+
# ------------------------------------- the final sinc kernel ------------------------------------- #
|
160 |
+
if np.random.uniform() < self.kernel_opt['final_sinc_prob']:
|
161 |
+
kernel_size = random.choice(self.kernel_range)
|
162 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
163 |
+
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
|
164 |
+
sinc_kernel = torch.FloatTensor(sinc_kernel)
|
165 |
+
else:
|
166 |
+
sinc_kernel = self.pulse_tensor
|
167 |
+
|
168 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
169 |
+
kernel = torch.FloatTensor(kernel)
|
170 |
+
kernel2 = torch.FloatTensor(kernel2)
|
171 |
+
|
172 |
+
return (kernel, kernel2, sinc_kernel)
|
173 |
+
|
174 |
+
@torch.no_grad()
|
175 |
+
def __call__(self, img_gt, kernels=None):
|
176 |
+
'''
|
177 |
+
:param: img_gt: BCHW, RGB, [0, 1] float32 tensor
|
178 |
+
'''
|
179 |
+
if kernels is None:
|
180 |
+
kernel = []
|
181 |
+
kernel2 = []
|
182 |
+
sinc_kernel = []
|
183 |
+
for _ in range(img_gt.shape[0]):
|
184 |
+
k, k2, sk = self.get_kernel()
|
185 |
+
kernel.append(k)
|
186 |
+
kernel2.append(k2)
|
187 |
+
sinc_kernel.append(sk)
|
188 |
+
kernel = torch.stack(kernel)
|
189 |
+
kernel2 = torch.stack(kernel2)
|
190 |
+
sinc_kernel = torch.stack(sinc_kernel)
|
191 |
+
else:
|
192 |
+
# kernels created in dataset.
|
193 |
+
kernel, kernel2, sinc_kernel = kernels
|
194 |
+
|
195 |
+
# ----------------------- Pre-process ----------------------- #
|
196 |
+
im_gt = img_gt.to(self.device)
|
197 |
+
if self.degrade_opt['use_usm']:
|
198 |
+
im_gt = self.usm_sharpener(im_gt)
|
199 |
+
im_gt = im_gt.to(memory_format=torch.contiguous_format).float()
|
200 |
+
kernel = kernel.to(self.device)
|
201 |
+
kernel2 = kernel2.to(self.device)
|
202 |
+
sinc_kernel = sinc_kernel.to(self.device)
|
203 |
+
ori_h, ori_w = im_gt.size()[2:4]
|
204 |
+
|
205 |
+
# ----------------------- The first degradation process ----------------------- #
|
206 |
+
# blur
|
207 |
+
out = filter2D(im_gt, kernel)
|
208 |
+
# random resize
|
209 |
+
updown_type = random.choices(
|
210 |
+
['up', 'down', 'keep'],
|
211 |
+
self.degrade_opt['resize_prob'],
|
212 |
+
)[0]
|
213 |
+
if updown_type == 'up':
|
214 |
+
scale = random.uniform(1, self.degrade_opt['resize_range'][1])
|
215 |
+
elif updown_type == 'down':
|
216 |
+
scale = random.uniform(self.degrade_opt['resize_range'][0], 1)
|
217 |
+
else:
|
218 |
+
scale = 1
|
219 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
220 |
+
out = torch.nn.functional.interpolate(out, scale_factor=scale, mode=mode)
|
221 |
+
# add noise
|
222 |
+
gray_noise_prob = self.degrade_opt['gray_noise_prob']
|
223 |
+
if random.random() < self.degrade_opt['gaussian_noise_prob']:
|
224 |
+
out = random_add_gaussian_noise_pt(
|
225 |
+
out,
|
226 |
+
sigma_range=self.degrade_opt['noise_range'],
|
227 |
+
clip=True,
|
228 |
+
rounds=False,
|
229 |
+
gray_prob=gray_noise_prob,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
out = random_add_poisson_noise_pt(
|
233 |
+
out,
|
234 |
+
scale_range=self.degrade_opt['poisson_scale_range'],
|
235 |
+
gray_prob=gray_noise_prob,
|
236 |
+
clip=True,
|
237 |
+
rounds=False)
|
238 |
+
# JPEG compression
|
239 |
+
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range'])
|
240 |
+
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
|
241 |
+
out = self.jpeger(out, quality=jpeg_p)
|
242 |
+
|
243 |
+
# ----------------------- The second degradation process ----------------------- #
|
244 |
+
# blur
|
245 |
+
if random.random() < self.degrade_opt['second_blur_prob']:
|
246 |
+
out = out.contiguous()
|
247 |
+
out = filter2D(out, kernel2)
|
248 |
+
# random resize
|
249 |
+
updown_type = random.choices(
|
250 |
+
['up', 'down', 'keep'],
|
251 |
+
self.degrade_opt['resize_prob2'],
|
252 |
+
)[0]
|
253 |
+
if updown_type == 'up':
|
254 |
+
scale = random.uniform(1, self.degrade_opt['resize_range2'][1])
|
255 |
+
elif updown_type == 'down':
|
256 |
+
scale = random.uniform(self.degrade_opt['resize_range2'][0], 1)
|
257 |
+
else:
|
258 |
+
scale = 1
|
259 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
260 |
+
out = torch.nn.functional.interpolate(
|
261 |
+
out,
|
262 |
+
size=(int(ori_h / self.degrade_opt['sf'] * scale),
|
263 |
+
int(ori_w / self.degrade_opt['sf'] * scale)),
|
264 |
+
mode=mode,
|
265 |
+
)
|
266 |
+
# add noise
|
267 |
+
gray_noise_prob = self.degrade_opt['gray_noise_prob2']
|
268 |
+
if random.random() < self.degrade_opt['gaussian_noise_prob2']:
|
269 |
+
out = random_add_gaussian_noise_pt(
|
270 |
+
out,
|
271 |
+
sigma_range=self.degrade_opt['noise_range2'],
|
272 |
+
clip=True,
|
273 |
+
rounds=False,
|
274 |
+
gray_prob=gray_noise_prob,
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
out = random_add_poisson_noise_pt(
|
278 |
+
out,
|
279 |
+
scale_range=self.degrade_opt['poisson_scale_range2'],
|
280 |
+
gray_prob=gray_noise_prob,
|
281 |
+
clip=True,
|
282 |
+
rounds=False,
|
283 |
+
)
|
284 |
+
|
285 |
+
# JPEG compression + the final sinc filter
|
286 |
+
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
|
287 |
+
# as one operation.
|
288 |
+
# We consider two orders:
|
289 |
+
# 1. [resize back + sinc filter] + JPEG compression
|
290 |
+
# 2. JPEG compression + [resize back + sinc filter]
|
291 |
+
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
|
292 |
+
if random.random() < 0.5:
|
293 |
+
# resize back + the final sinc filter
|
294 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
295 |
+
out = torch.nn.functional.interpolate(
|
296 |
+
out,
|
297 |
+
size=(ori_h // self.degrade_opt['sf'],
|
298 |
+
ori_w // self.degrade_opt['sf']),
|
299 |
+
mode=mode,
|
300 |
+
)
|
301 |
+
out = out.contiguous()
|
302 |
+
out = filter2D(out, sinc_kernel)
|
303 |
+
# JPEG compression
|
304 |
+
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
|
305 |
+
out = torch.clamp(out, 0, 1)
|
306 |
+
out = self.jpeger(out, quality=jpeg_p)
|
307 |
+
else:
|
308 |
+
# JPEG compression
|
309 |
+
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
|
310 |
+
out = torch.clamp(out, 0, 1)
|
311 |
+
out = self.jpeger(out, quality=jpeg_p)
|
312 |
+
# resize back + the final sinc filter
|
313 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
314 |
+
out = torch.nn.functional.interpolate(
|
315 |
+
out,
|
316 |
+
size=(ori_h // self.degrade_opt['sf'],
|
317 |
+
ori_w // self.degrade_opt['sf']),
|
318 |
+
mode=mode,
|
319 |
+
)
|
320 |
+
out = out.contiguous()
|
321 |
+
out = filter2D(out, sinc_kernel)
|
322 |
+
|
323 |
+
# clamp and round
|
324 |
+
im_lq = torch.clamp(out, 0, 1.0)
|
325 |
+
|
326 |
+
# random crop
|
327 |
+
gt_size = self.degrade_opt['gt_size']
|
328 |
+
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, self.degrade_opt['sf'])
|
329 |
+
|
330 |
+
if self.degrade_opt['resize_lq']:
|
331 |
+
im_lq = torch.nn.functional.interpolate(
|
332 |
+
im_lq,
|
333 |
+
size=(im_gt.size(-2),
|
334 |
+
im_gt.size(-1)),
|
335 |
+
mode='bicubic',
|
336 |
+
)
|
337 |
+
|
338 |
+
if random.random() < self.degrade_opt['no_degradation_prob'] or torch.isnan(im_lq).any():
|
339 |
+
im_lq = im_gt
|
340 |
+
|
341 |
+
# sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
|
342 |
+
im_lq = im_lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
|
343 |
+
im_lq = im_lq*2 - 1.0
|
344 |
+
im_gt = im_gt*2 - 1.0
|
345 |
+
|
346 |
+
if self.degrade_opt['random_size']:
|
347 |
+
raise NotImplementedError
|
348 |
+
im_lq, im_gt = self.randn_cropinput(im_lq, im_gt)
|
349 |
+
|
350 |
+
im_lq = torch.clamp(im_lq, -1.0, 1.0)
|
351 |
+
im_gt = torch.clamp(im_gt, -1.0, 1.0)
|
352 |
+
|
353 |
+
return (im_lq, im_gt)
|