Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Delete eva_clip/flux/modules/layers.py
Browse files- eva_clip/flux/modules/layers.py +0 -253
eva_clip/flux/modules/layers.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from einops import rearrange
|
6 |
-
from torch import Tensor, nn
|
7 |
-
|
8 |
-
from flux.math import attention, rope
|
9 |
-
|
10 |
-
|
11 |
-
class EmbedND(nn.Module):
|
12 |
-
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
13 |
-
super().__init__()
|
14 |
-
self.dim = dim
|
15 |
-
self.theta = theta
|
16 |
-
self.axes_dim = axes_dim
|
17 |
-
|
18 |
-
def forward(self, ids: Tensor) -> Tensor:
|
19 |
-
n_axes = ids.shape[-1]
|
20 |
-
emb = torch.cat(
|
21 |
-
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
22 |
-
dim=-3,
|
23 |
-
)
|
24 |
-
|
25 |
-
return emb.unsqueeze(1)
|
26 |
-
|
27 |
-
|
28 |
-
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
29 |
-
"""
|
30 |
-
Create sinusoidal timestep embeddings.
|
31 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
32 |
-
These may be fractional.
|
33 |
-
:param dim: the dimension of the output.
|
34 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
35 |
-
:return: an (N, D) Tensor of positional embeddings.
|
36 |
-
"""
|
37 |
-
t = time_factor * t
|
38 |
-
half = dim // 2
|
39 |
-
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
40 |
-
t.device
|
41 |
-
)
|
42 |
-
|
43 |
-
args = t[:, None].float() * freqs[None]
|
44 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
-
if dim % 2:
|
46 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
-
if torch.is_floating_point(t):
|
48 |
-
embedding = embedding.to(t)
|
49 |
-
return embedding
|
50 |
-
|
51 |
-
|
52 |
-
class MLPEmbedder(nn.Module):
|
53 |
-
def __init__(self, in_dim: int, hidden_dim: int):
|
54 |
-
super().__init__()
|
55 |
-
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
56 |
-
self.silu = nn.SiLU()
|
57 |
-
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
58 |
-
|
59 |
-
def forward(self, x: Tensor) -> Tensor:
|
60 |
-
return self.out_layer(self.silu(self.in_layer(x)))
|
61 |
-
|
62 |
-
|
63 |
-
class RMSNorm(torch.nn.Module):
|
64 |
-
def __init__(self, dim: int):
|
65 |
-
super().__init__()
|
66 |
-
self.scale = nn.Parameter(torch.ones(dim))
|
67 |
-
|
68 |
-
def forward(self, x: Tensor):
|
69 |
-
x_dtype = x.dtype
|
70 |
-
x = x.float()
|
71 |
-
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
72 |
-
return (x * rrms).to(dtype=x_dtype) * self.scale
|
73 |
-
|
74 |
-
|
75 |
-
class QKNorm(torch.nn.Module):
|
76 |
-
def __init__(self, dim: int):
|
77 |
-
super().__init__()
|
78 |
-
self.query_norm = RMSNorm(dim)
|
79 |
-
self.key_norm = RMSNorm(dim)
|
80 |
-
|
81 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
82 |
-
q = self.query_norm(q)
|
83 |
-
k = self.key_norm(k)
|
84 |
-
return q.to(v), k.to(v)
|
85 |
-
|
86 |
-
|
87 |
-
class SelfAttention(nn.Module):
|
88 |
-
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
89 |
-
super().__init__()
|
90 |
-
self.num_heads = num_heads
|
91 |
-
head_dim = dim // num_heads
|
92 |
-
|
93 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
94 |
-
self.norm = QKNorm(head_dim)
|
95 |
-
self.proj = nn.Linear(dim, dim)
|
96 |
-
|
97 |
-
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
98 |
-
qkv = self.qkv(x)
|
99 |
-
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
100 |
-
q, k = self.norm(q, k, v)
|
101 |
-
x = attention(q, k, v, pe=pe)
|
102 |
-
x = self.proj(x)
|
103 |
-
return x
|
104 |
-
|
105 |
-
|
106 |
-
@dataclass
|
107 |
-
class ModulationOut:
|
108 |
-
shift: Tensor
|
109 |
-
scale: Tensor
|
110 |
-
gate: Tensor
|
111 |
-
|
112 |
-
|
113 |
-
class Modulation(nn.Module):
|
114 |
-
def __init__(self, dim: int, double: bool):
|
115 |
-
super().__init__()
|
116 |
-
self.is_double = double
|
117 |
-
self.multiplier = 6 if double else 3
|
118 |
-
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
119 |
-
|
120 |
-
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut]:
|
121 |
-
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
122 |
-
|
123 |
-
return (
|
124 |
-
ModulationOut(*out[:3]),
|
125 |
-
ModulationOut(*out[3:]) if self.is_double else None,
|
126 |
-
)
|
127 |
-
|
128 |
-
|
129 |
-
class DoubleStreamBlock(nn.Module):
|
130 |
-
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
131 |
-
super().__init__()
|
132 |
-
|
133 |
-
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
134 |
-
self.num_heads = num_heads
|
135 |
-
self.hidden_size = hidden_size
|
136 |
-
self.img_mod = Modulation(hidden_size, double=True)
|
137 |
-
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
138 |
-
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
139 |
-
|
140 |
-
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
141 |
-
self.img_mlp = nn.Sequential(
|
142 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
143 |
-
nn.GELU(approximate="tanh"),
|
144 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
145 |
-
)
|
146 |
-
|
147 |
-
self.txt_mod = Modulation(hidden_size, double=True)
|
148 |
-
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
149 |
-
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
150 |
-
|
151 |
-
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
152 |
-
self.txt_mlp = nn.Sequential(
|
153 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
154 |
-
nn.GELU(approximate="tanh"),
|
155 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
156 |
-
)
|
157 |
-
|
158 |
-
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
159 |
-
img_mod1, img_mod2 = self.img_mod(vec)
|
160 |
-
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
161 |
-
|
162 |
-
# prepare image for attention
|
163 |
-
img_modulated = self.img_norm1(img)
|
164 |
-
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
165 |
-
img_qkv = self.img_attn.qkv(img_modulated)
|
166 |
-
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
167 |
-
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
168 |
-
|
169 |
-
# prepare txt for attention
|
170 |
-
txt_modulated = self.txt_norm1(txt)
|
171 |
-
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
172 |
-
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
173 |
-
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
174 |
-
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
175 |
-
|
176 |
-
# run actual attention
|
177 |
-
q = torch.cat((txt_q, img_q), dim=2)
|
178 |
-
k = torch.cat((txt_k, img_k), dim=2)
|
179 |
-
v = torch.cat((txt_v, img_v), dim=2)
|
180 |
-
|
181 |
-
attn = attention(q, k, v, pe=pe)
|
182 |
-
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
183 |
-
|
184 |
-
# calculate the img bloks
|
185 |
-
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
186 |
-
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
187 |
-
|
188 |
-
# calculate the txt bloks
|
189 |
-
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
190 |
-
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
191 |
-
return img, txt
|
192 |
-
|
193 |
-
|
194 |
-
class SingleStreamBlock(nn.Module):
|
195 |
-
"""
|
196 |
-
A DiT block with parallel linear layers as described in
|
197 |
-
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
198 |
-
"""
|
199 |
-
|
200 |
-
def __init__(
|
201 |
-
self,
|
202 |
-
hidden_size: int,
|
203 |
-
num_heads: int,
|
204 |
-
mlp_ratio: float = 4.0,
|
205 |
-
qk_scale: float = None,
|
206 |
-
):
|
207 |
-
super().__init__()
|
208 |
-
self.hidden_dim = hidden_size
|
209 |
-
self.num_heads = num_heads
|
210 |
-
head_dim = hidden_size // num_heads
|
211 |
-
self.scale = qk_scale or head_dim**-0.5
|
212 |
-
|
213 |
-
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
214 |
-
# qkv and mlp_in
|
215 |
-
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
216 |
-
# proj and mlp_out
|
217 |
-
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
218 |
-
|
219 |
-
self.norm = QKNorm(head_dim)
|
220 |
-
|
221 |
-
self.hidden_size = hidden_size
|
222 |
-
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
223 |
-
|
224 |
-
self.mlp_act = nn.GELU(approximate="tanh")
|
225 |
-
self.modulation = Modulation(hidden_size, double=False)
|
226 |
-
|
227 |
-
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
228 |
-
mod, _ = self.modulation(vec)
|
229 |
-
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
230 |
-
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
231 |
-
|
232 |
-
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
233 |
-
q, k = self.norm(q, k, v)
|
234 |
-
|
235 |
-
# compute attention
|
236 |
-
attn = attention(q, k, v, pe=pe)
|
237 |
-
# compute activation in mlp stream, cat again and run second linear layer
|
238 |
-
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
239 |
-
return x + mod.gate * output
|
240 |
-
|
241 |
-
|
242 |
-
class LastLayer(nn.Module):
|
243 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
244 |
-
super().__init__()
|
245 |
-
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
246 |
-
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
247 |
-
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
248 |
-
|
249 |
-
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
250 |
-
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
251 |
-
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
252 |
-
x = self.linear(x)
|
253 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|