File size: 8,095 Bytes
af4b5be
 
d1cebce
 
 
 
 
 
 
 
 
 
 
 
 
 
af4b5be
d1cebce
af4b5be
9ea956e
af4b5be
 
9ea956e
af4b5be
 
 
 
 
 
 
 
9ea956e
af4b5be
d1cebce
af4b5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cebce
 
 
 
 
 
 
 
 
 
af4b5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1cebce
 
 
 
 
 
 
af4b5be
d1cebce
af4b5be
 
d1cebce
af4b5be
 
 
 
 
 
 
 
 
d1cebce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import sys
import dlib
import cv2
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from argparse import Namespace
import fairseq
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.configs import GenerationConfig
from huggingface_hub import hf_hub_download
import gradio as gr
from pytube import YouTube

# ---- Download AV-HuBERT and install dependencies ----
os.system('git clone https://github.com/facebookresearch/av_hubert.git')
os.chdir('/home/user/app/av_hubert')
os.system('git submodule init')
os.system('git submodule update')
os.chdir('/home/user/app/av_hubert/fairseq')
os.system('pip install ./')
os.system('pip install scipy')
os.system('pip install sentencepiece')
os.system('pip install python_speech_features')
os.system('pip install scikit-video')
os.system('pip install transformers')
os.system('pip install gradio==3.12')
os.system('pip install numpy==1.23.3')
sys.path.append('/home/user/app/av_hubert/avhubert')

# ---- Load AV-HuBERT models and setup Gradio interface ----
user_dir = "/home/user/app/av_hubert/avhubert"
utils.import_user_module(Namespace(user_dir=user_dir))
data_dir = "/home/user/app/video"

ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
mean_face_path = "/home/user/app/20words_mean_face.npy"
mouth_roi_path = "/home/user/app/roi.mp4"
modalities = ["video"]
gen_subset = "test"
gen_cfg = GenerationConfig(beam=20)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
saved_cfg.task.modalities = modalities
saved_cfg.task.data = data_dir
saved_cfg.task.label_dir = data_dir
task = tasks.setup_task(saved_cfg.task)
generator = task.build_generator(models, gen_cfg)

def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print("Success download video")
    print(abs_video_path)
    return abs_video_path
    
def detect_landmark(image, detector, predictor):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    face_locations  = detector(gray, 1)
    coords = None
    for (_, face_location) in enumerate(face_locations):
        if torch.cuda.is_available():
            rect = face_location.rect
        else:
            rect = face_location
        shape = predictor(gray, rect)
        coords = np.zeros((68, 2), dtype=np.int32)
        for i in range(0, 68):
            coords[i] = (shape.part(i).x, shape.part(i).y)
    return coords

def preprocess_video(input_video_path):
    if torch.cuda.is_available():
        detector = dlib.cnn_face_detection_model_v1(face_detector_path)
    else:
        detector = dlib.get_frontal_face_detector()
    
    predictor = dlib.shape_predictor(face_predictor_path)
    STD_SIZE = (256, 256)
    mean_face_landmarks = np.load(mean_face_path)
    stablePntsIDs = [33, 36, 39, 42, 45]
    videogen = skvideo.io.vread(input_video_path)
    frames = np.array([frame for frame in videogen])
    landmarks = []
    for frame in tqdm(frames):
        landmark = detect_landmark(frame, detector, predictor)
        landmarks.append(landmark)
    preprocessed_landmarks = landmarks_interpolate(landmarks)
    rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, 
                          window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
    write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
    return mouth_roi_path

def extract_word_timings(hypo):
    words = hypo.split()
    word_timings = [(idx * 0.04, word) for idx, word in enumerate(words)]
    return word_timings

def save_word_timings(word_timings, output_file):
    with open(output_file, "w") as f:
        for timing, word in word_timings:
            f.write(f"{timing:.2f}\t{word}\n")

def predict(process_video):
    num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))

    tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
    label_cont = ["DUMMY\n"]
    with open(f"{data_dir}/test.tsv", "w") as fo:
      fo.write("".join(tsv_cont))
    with open(f"{data_dir}/test.wrd", "w") as fo:
      fo.write("".join(label_cont))
    task.load_dataset(gen_subset, task_cfg=saved_cfg.task)

    def decode_fn(x):
        dictionary = task.target_dictionary
        symbols_ignore = generator.symbols_to_strip_from_output
        symbols_ignore.add(dictionary.pad())
        return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)

    itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
    sample = next(itr)
    if torch.cuda.is_available():
        sample = utils.move_to_cuda(sample)
    hypos = task.inference_step(generator, models, sample)
    ref = decode_fn(sample['target'][0].int().cpu())
    hypo = hypos[0][0]['tokens'].int().cpu()
    hypo = decode_fn(hypo)
    
    # Extract word timings
    word_timings = extract_word_timings(hypo)
    
    # Save word timings to a txt file
    output_file = "/home/user/app/av_hubert/avhubert/word_timings.txt"
    save_word_timings(word_timings, output_file)

    return hypo

# ---- Gradio Layout -----

youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True) 
demo = gr.Blocks()
demo.encrypt = False
text_output = gr.Textbox()

with demo:
    gr.Markdown('''
        <div>
        <h1 style='text-align: center'>Speech Recognition from Visual Lip Movement by Audio-Visual Hidden Unit BERT Model (AV-HuBERT)</h1>
        This space uses AV-HuBERT models from <a href='https://github.com/facebookresearch' target='_blank'><b>Meta Research</b></a> to recoginze the speech from Lip Movement 🤗
        <figure>
            <img src="https://huggingface.co/vumichien/AV-HuBERT/resolve/main/lipreading.gif" alt="Audio-Visual Speech Recognition">
            <figcaption> Speech Recognition from visual lip movement
            </figcaption>
        </figure>
        </div>
    ''')
    
    gr.Markdown('''
        ### Reading Lip movement with youtube link using Avhubert
        ##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
        ##### Step 1b. You also can upload video directly 
        ##### Step 2. Generating landmarks surrounding mouth area
        ##### Step 3. Reading lip movement.
    ''')
    
    gr.Markdown('''
        ### You can test by following examples:
    ''')
    
    examples = gr.Examples(examples=[
        "https://www.youtube.com/watch?v=ZXVDnuepW2s",
        "https://www.youtube.com/watch?v=X8_glJn1B8o",
        "https://www.youtube.com/watch?v=80yqL2KzBVw"],
        label="Examples", inputs=[youtube_url_in])
    
    youtube_url_in.render()
    
    download_youtube_btn = gr.Button("Download Youtube video")
    download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
    
    detect_landmark_btn = gr.Button("Detect landmark")
    detect_landmark_btn.click(preprocess_video, [video_in], [video_out])
    
    predict_btn = gr.Button("Predict")
    predict_btn.click(predict, [video_out], [text_output])

    video_in.render()
    video_out.render()
    text_output.render()

    # Download button for word timings file
    download_word_timings_btn = gr.Download(label="Download Word Timings")
    download_word_timings_btn.click(lambda: "/home/user/app/av_hubert/avhubert/word_timings.txt")

demo.launch(debug=True)