File size: 9,151 Bytes
af4b5be
 
47e6580
 
af4b5be
 
9ea956e
af4b5be
 
9ea956e
af4b5be
 
 
 
 
 
 
 
312a1e4
7bb32ce
8c1767f
9ea956e
af4b5be
8c1767f
 
 
 
 
 
 
7bb32ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1767f
 
af4b5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f113e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6cd70
f113e41
 
 
 
 
 
 
7b6cd70
f113e41
 
 
7b6cd70
f113e41
7b6cd70
55c3ec1
af4b5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1767f
af4b5be
7bb32ce
312a1e4
af4b5be
 
 
 
 
 
 
 
 
312a1e4
8964b86
312a1e4
 
 
 
 
 
8964b86
312a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7658e9
7b6cd70
e7658e9
312a1e4
7bb32ce
312a1e4
1b15a28
7bb32ce
 
8c1767f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import sys
import json


os.system('git clone https://github.com/facebookresearch/av_hubert.git')
os.chdir('/home/user/app/av_hubert')
os.system('git submodule init')
os.system('git submodule update')
os.chdir('/home/user/app/av_hubert/fairseq')
os.system('pip install ./')
os.system('pip install scipy')
os.system('pip install sentencepiece')
os.system('pip install python_speech_features')
os.system('pip install scikit-video')
os.system('pip install transformers')
os.system('pip install gradio==3.12')
os.system('pip install numpy==1.23.3')


# sys.path.append('/home/user/app/av_hubert')
sys.path.append('/home/user/app/av_hubert/avhubert')

print(sys.path)
print(os.listdir())
print(sys.argv, type(sys.argv))
sys.argv.append('dummy')



import dlib, cv2, os
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from base64 import b64encode
import torch
import cv2
import tempfile
from argparse import Namespace
import fairseq
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.configs import GenerationConfig
from huggingface_hub import hf_hub_download
import gradio as gr
from pytube import YouTube

# os.chdir('/home/user/app/av_hubert/avhubert')

user_dir = "/home/user/app/av_hubert/avhubert"
utils.import_user_module(Namespace(user_dir=user_dir))
data_dir = "/home/user/app/video"

ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
mean_face_path = "/home/user/app/20words_mean_face.npy"
mouth_roi_path = "/home/user/app/roi.mp4"
modalities = ["video"]
gen_subset = "test"
gen_cfg = GenerationConfig(beam=20)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
saved_cfg.task.modalities = modalities
saved_cfg.task.data = data_dir
saved_cfg.task.label_dir = data_dir
task = tasks.setup_task(saved_cfg.task)
generator = task.build_generator(models, gen_cfg)

def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print("Success download video")
    print(abs_video_path)
    return abs_video_path
    
def detect_landmark(image, detector, predictor):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    face_locations  = detector(gray, 1)
    coords = None
    for (_, face_location) in enumerate(face_locations):
        if torch.cuda.is_available():
            rect = face_location.rect
        else:
            rect = face_location
        shape = predictor(gray, rect)
        coords = np.zeros((68, 2), dtype=np.int32)
        for i in range(0, 68):
            coords[i] = (shape.part(i).x, shape.part(i).y)
    return coords

# def predict_and_save(process_video):
#     num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))

#     tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
#     label_cont = ["DUMMY\n"]
#     with open(f"{data_dir}/test.tsv", "w") as fo:
#       fo.write("".join(tsv_cont))
#     with open(f"{data_dir}/test.wrd", "w") as fo:
#       fo.write("".join(label_cont))
#     task.load_dataset(gen_subset, task_cfg=saved_cfg.task)

#     def decode_fn(x):
#         dictionary = task.target_dictionary
#         symbols_ignore = generator.symbols_to_strip_from_output
#         symbols_ignore.add(dictionary.pad())
#         return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)

#     itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
#     sample = next(itr)
#     if torch.cuda.is_available():
#         sample = utils.move_to_cuda(sample)
#     hypos = task.inference_step(generator, models, sample)
#     ref = decode_fn(sample['target'][0].int().cpu())
#     hypo = hypos[0][0]['tokens'].int().cpu()
#     hypo = decode_fn(hypo)
    
#     # Collect timestamps and texts
#     transcript = []
#     for i, (start, end) in enumerate(sample['net_input']['video_lengths'], 1):
#         start_time = float(start) / 16_000
#         end_time = float(end) / 16_000
#         text = hypo[i].strip()
#         transcript.append({"timestamp": [start_time, end_time], "text": text})
    
#     # Save transcript to a JSON file
#     with open('speech_transcript.json', 'w') as outfile:
#         json.dump(transcript, outfile, indent=4)
    
#     return hypo


def preprocess_video(input_video_path):
    if torch.cuda.is_available():
        detector = dlib.cnn_face_detection_model_v1(face_detector_path)
    else:
        detector = dlib.get_frontal_face_detector()
    
    predictor = dlib.shape_predictor(face_predictor_path)
    STD_SIZE = (256, 256)
    mean_face_landmarks = np.load(mean_face_path)
    stablePntsIDs = [33, 36, 39, 42, 45]
    videogen = skvideo.io.vread(input_video_path)
    frames = np.array([frame for frame in videogen])
    landmarks = []
    for frame in tqdm(frames):
        landmark = detect_landmark(frame, detector, predictor)
        landmarks.append(landmark)
    preprocessed_landmarks = landmarks_interpolate(landmarks)
    rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, 
                          window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
    write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
    return mouth_roi_path

def predict(process_video):
    num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))

    tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
    label_cont = ["DUMMY\n"]
    with open(f"{data_dir}/test.tsv", "w") as fo:
      fo.write("".join(tsv_cont))
    with open(f"{data_dir}/test.wrd", "w") as fo:
      fo.write("".join(label_cont))
    task.load_dataset(gen_subset, task_cfg=saved_cfg.task)

    def decode_fn(x):
        dictionary = task.target_dictionary
        symbols_ignore = generator.symbols_to_strip_from_output
        symbols_ignore.add(dictionary.pad())
        return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)

    itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
    sample = next(itr)
    if torch.cuda.is_available():
        sample = utils.move_to_cuda(sample)
    hypos = task.inference_step(generator, models, sample)
    ref = decode_fn(sample['target'][0].int().cpu())
    hypo = hypos[0][0]['tokens'].int().cpu()
    hypo = decode_fn(hypo)
    return hypo


# ---- Gradio Layout -----
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True) 
demo = gr.Blocks()
demo.encrypt = False
text_output = gr.Textbox()

with demo:
    gr.Markdown('''
            <div>
            <h1 style='text-align: center'>Lip Reading Using Machine learning (Audio-Visual Hidden Unit BERT Model (AV-HuBERT))</h1>
            </div>
        ''')
    with gr.Row():
            gr.Markdown('''
            ### Reading Lip movement with youtube link using Avhubert
            ##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
            ##### Step 1b. Drag and drop videos to upload directly 
            ##### Step 2. Generating landmarks surrounding mouth area
            ##### Step 3. Reading lip movement.
            ''')
    with gr.Row():         
        gr.Markdown('''
            ### You can test by following examples:
            ''')
    examples = gr.Examples(examples=
            [ "https://www.youtube.com/watch?v=ZXVDnuepW2s", 
              "https://www.youtube.com/watch?v=X8_glJn1B8o", 
              "https://www.youtube.com/watch?v=80yqL2KzBVw"],
          label="Examples", inputs=[youtube_url_in])
    with gr.Column():
          youtube_url_in.render()
          download_youtube_btn = gr.Button("Download Youtube video")
          download_youtube_btn.click(get_youtube, [youtube_url_in], [
              video_in])
          print(video_in)
    with gr.Row():  
        video_in.render()
        video_out.render()
    with gr.Row():
        detect_landmark_btn = gr.Button("Detect landmark")
        detect_landmark_btn.click(preprocess_video, [video_in], [
            video_out])
        predict_btn = gr.Button("Predict")
        #predict_btn.click(predict, [video_out], [text_output])
        predict_btn.click(predict, [video_out], [text_output])
    with gr.Row():
        # video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False) 
        text_output.render()

        
        
demo.launch(debug=True)