image_captioner / main.py
Sverd's picture
upload from local pc
1352a28 verified
# works with gradio file upload, not image upload
import base64
from fastapi import FastAPI #, UploadFile, File
from img_upload import upload_image_to_blob
from image_processing import process_image
from pydantic import BaseModel, validator
from PIL import Image
import io
import gradio as gr
import uuid
app = FastAPI()
class FileUpload(BaseModel):
filename: str
data: str
# @validator('data')
# def validate_image(cls, data: str):
# try:
# image_data = base64.b64decode(data)
# image = Image.open(BytesIO(image_data))
# if image.format not in ['JPEG', 'PNG']:
# raise ValueError('Invalid file type')
# if max(image.size) > 5000:
# raise ValueError('Image dimensions are too large')
# if len(data) > 5000 * 5000: # adjust this value based on your needs
# raise ValueError('File size is too large')
# return data
# except Exception as e:
# raise ValueError('Invalid image') from e
#
class Response(BaseModel):
result: str
@app.post("/upload", response_model=Response)
async def create_upload_file(file: FileUpload):
data = base64.b64decode(file.data)
sas_url = upload_image_to_blob(data, file.filename)
result = process_image(sas_url)
return result
async def gradio_interface(image: Image.Image):
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="JPEG")
img_byte_arr = img_byte_arr.getvalue()
# Encode bytes to base64
data = base64.b64encode(img_byte_arr).decode()
# Generate a unique ID for the image
unique_id = str(uuid.uuid4())
response = await create_upload_file(FileUpload(filename=unique_id + ".jpg", data=data))
return response
iface = gr.Interface(fn=gradio_interface, inputs=gr.Image(type="pil"), outputs="text")
app = gr.mount_gradio_app(app, iface, "/gradio")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000, )