File size: 7,041 Bytes
830bf75
 
 
 
 
 
 
0e88496
 
 
 
 
830bf75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66791db
830bf75
 
 
66791db
830bf75
 
66791db
830bf75
66791db
 
 
 
 
 
830bf75
 
 
66791db
830bf75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66791db
830bf75
66791db
830bf75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import ast
import pandas as pd
import gradio as gr
import litellm
import plotly.express as px
from collections import defaultdict
from datetime import datetime
import os



os.environ['DEEPSEEK_API_KEY']

def preprocess_dataset(test_data):
    """
    Preprocess the dataset to convert the 'choices' field from a string to a list of strings.
    """
    preprocessed_data = []
    for example in test_data:
        if isinstance(example['choices'], str):
            choices_str = example['choices']
            if choices_str.startswith("'") and choices_str.endswith("'"):
                choices_str = choices_str[1:-1]
            elif choices_str.startswith('"') and choices_str.endswith('"'):
                choices_str = choices_str[1:-1]
            choices_str = choices_str.replace("\\'", "'")
            try:
                example['choices'] = ast.literal_eval(choices_str)
            except (ValueError, SyntaxError):
                print(f"Error parsing choices: {choices_str}")
                continue
        preprocessed_data.append(example)
    return preprocessed_data

def evaluate_afrimmlu(test_data, model_name="deepseek-chat"):
    """
    Evaluate the model on the AfriMMLU dataset.
    """
    results = []
    correct = 0
    total = 0
    subject_results = defaultdict(lambda: {"correct": 0, "total": 0})

    for example in test_data:
        question = example['question']
        choices = example['choices']
        answer = example['answer']
        subject = example['subject']

        prompt = (
            f"Answer the following multiple-choice question. "
            f"Return only the letter corresponding to the correct answer (A, B, C, or D).\n"
            f"Question: {question}\n"
            f"Options:\n"
            f"A. {choices[0]}\n"
            f"B. {choices[1]}\n"
            f"C. {choices[2]}\n"
            f"D. {choices[3]}\n"
            f"Answer:"
        )

        try:
            response = litellm.completion(
                model=model_name,
                messages=[{"role": "user", "content": prompt}]
            )
            model_output = response.choices[0].message.content.strip().upper()
            
            model_answer = None
            for char in model_output:
                if char in ['A', 'B', 'C', 'D']:
                    model_answer = char
                    break

            is_correct = model_answer == answer.upper()
            if is_correct:
                correct += 1
                subject_results[subject]["correct"] += 1
            total += 1
            subject_results[subject]["total"] += 1

            # Store detailed results
            results.append({
                'timestamp': datetime.now().isoformat(),
                'subject': subject,
                'question': question,
                'model_answer': model_answer,
                'correct_answer': answer.upper(),
                'is_correct': is_correct,
                'total_tokens': response.usage.total_tokens
            })

        except Exception as e:
            print(f"Error processing question: {str(e)}")
            continue

    # Calculate accuracies
    accuracy = (correct / total * 100) if total > 0 else 0
    subject_accuracy = {
        subject: (stats["correct"] / stats["total"] * 100) if stats["total"] > 0 else 0
        for subject, stats in subject_results.items()
    }

    # Export results to CSV
    df = pd.DataFrame(results)
    df.to_csv('detailed_results.csv', index=False)

    # Export summary to CSV
    summary_data = [{'subject': subject, 'accuracy': acc} 
                   for subject, acc in subject_accuracy.items()]
    summary_data.append({'subject': 'Overall', 'accuracy': accuracy})
    pd.DataFrame(summary_data).to_csv('summary_results.csv', index=False)

    return {
        "accuracy": accuracy,
        "subject_accuracy": subject_accuracy,
        "detailed_results": results
    }

def create_visualization(results_dict):
    """
    Create visualization from evaluation results.
    """
    summary_data = [
        {'Subject': subject, 'Accuracy (%)': accuracy} 
        for subject, accuracy in results_dict['subject_accuracy'].items()
    ]
    summary_data.append({'Subject': 'Overall', 'Accuracy (%)': results_dict['accuracy']})
    summary_df = pd.DataFrame(summary_data)
    
    fig = px.bar(
        summary_df,
        x='Subject',
        y='Accuracy (%)',
        title='AfriMMLU Evaluation Results',
        labels={'Subject': 'Subject', 'Accuracy (%)': 'Accuracy (%)'}
    )
    fig.update_layout(
        xaxis_tickangle=-45,
        showlegend=False,
        height=600
    )
    
    return summary_df, fig

def evaluate_and_display(test_file, model_name):
    # Load and preprocess data
    test_data = pd.read_json(test_file.name)
    preprocessed_data = preprocess_dataset(test_data.to_dict('records'))
    
    # Run evaluation
    results = evaluate_afrimmlu(preprocessed_data, model_name)
    
    # Create visualizations
    summary_df, plot = create_visualization(results)
    
    # Load detailed results with error handling
    try:
        detailed_df = pd.read_csv('detailed_results.csv')
    except (FileNotFoundError, pd.errors.EmptyDataError):
        detailed_df = pd.DataFrame(results["detailed_results"])
    
    return summary_df, plot, detailed_df


def create_gradio_interface():
    """
    Create and configure the Gradio interface.
    """
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # AfriMMLU Evaluation Dashboard
        Upload your test data and select a model to evaluate performance on the AfriMMLU benchmark.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload Test Data (JSON)",
                    file_types=[".json"]
                )
                model_input = gr.Dropdown(
                    choices=["deepseek/deepseek-chat"],
                    label="Select Model",
                    value="deepseek/deepseek-chat"
                )
                evaluate_btn = gr.Button("Evaluate", variant="primary")
        
        with gr.Row():
            with gr.Column():
                summary_table = gr.Dataframe(
                    headers=["Subject", "Accuracy (%)"],
                    label="Summary Results"
                )
        
        with gr.Row():
            with gr.Column():
                summary_plot = gr.Plot(label="Performance by Subject")
        
        with gr.Row():
            with gr.Column():
                detailed_results = gr.Dataframe(
                    label="Detailed Results",
                    wrap=True
                )
        
        evaluate_btn.click(
            fn=evaluate_and_display,
            inputs=[file_input, model_input],
            outputs=[summary_table, summary_plot, detailed_results]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)