|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps, rescale_noise_cfg |
|
from lvdm.common import noise_like |
|
from lvdm.common import extract_into_tensor |
|
import copy |
|
|
|
|
|
class DDIMSampler(object): |
|
def __init__(self, model, schedule="linear", **kwargs): |
|
super().__init__() |
|
self.model = model |
|
self.ddpm_num_timesteps = model.num_timesteps |
|
self.schedule = schedule |
|
self.counter = 0 |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != torch.device("cuda"): |
|
attr = attr.to(torch.device("cuda")) |
|
setattr(self, name, attr) |
|
|
|
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): |
|
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, |
|
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) |
|
alphas_cumprod = self.model.alphas_cumprod |
|
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' |
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) |
|
|
|
if self.model.use_dynamic_rescale: |
|
self.ddim_scale_arr = self.model.scale_arr[self.ddim_timesteps] |
|
self.ddim_scale_arr_prev = torch.cat([self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]]) |
|
|
|
self.register_buffer('betas', to_torch(self.model.betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) |
|
|
|
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), |
|
ddim_timesteps=self.ddim_timesteps, |
|
eta=ddim_eta,verbose=verbose) |
|
self.register_buffer('ddim_sigmas', ddim_sigmas) |
|
self.register_buffer('ddim_alphas', ddim_alphas) |
|
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) |
|
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) |
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( |
|
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( |
|
1 - self.alphas_cumprod / self.alphas_cumprod_prev)) |
|
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) |
|
|
|
@torch.no_grad() |
|
def sample(self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0., |
|
mask=None, |
|
x0=None, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
schedule_verbose=False, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
precision=None, |
|
fs=None, |
|
timestep_spacing='uniform', |
|
guidance_rescale=0.0, |
|
|
|
**kwargs |
|
): |
|
|
|
|
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
try: |
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0] |
|
except: |
|
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] |
|
|
|
if cbs != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
|
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_discretize=timestep_spacing, ddim_eta=eta, verbose=schedule_verbose) |
|
|
|
|
|
if len(shape) == 3: |
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
elif len(shape) == 4: |
|
C, T, H, W = shape |
|
size = (batch_size, C, T, H, W) |
|
|
|
|
|
samples, intermediates = self.ddim_sampling(conditioning, size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
verbose=verbose, |
|
precision=precision, |
|
fs=fs, |
|
guidance_rescale=guidance_rescale, |
|
**kwargs) |
|
return samples, intermediates |
|
|
|
@torch.no_grad() |
|
def ddim_sampling(self, cond, shape, |
|
x_T=None, ddim_use_original_steps=False, |
|
callback=None, timesteps=None, quantize_denoised=False, |
|
mask=None, x0=None, img_callback=None, log_every_t=100, |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, |
|
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,precision=None,fs=None,guidance_rescale=0.0, |
|
**kwargs): |
|
device = self.model.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
if precision is not None: |
|
if precision == 16: |
|
img = img.to(dtype=torch.float16) |
|
|
|
|
|
if timesteps is None: |
|
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {'x_inter': [img], 'pred_x0': [img]} |
|
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
if verbose: |
|
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) |
|
else: |
|
iterator = time_range |
|
|
|
clean_cond = kwargs.pop("clean_cond", False) |
|
|
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
|
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
if clean_cond: |
|
img_orig = x0 |
|
else: |
|
img_orig = self.model.q_sample(x0, ts) |
|
img = img_orig * mask + (1. - mask) * img |
|
|
|
|
|
|
|
|
|
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, temperature=temperature, |
|
noise_dropout=noise_dropout, score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
mask=mask,x0=x0,fs=fs,guidance_rescale=guidance_rescale, |
|
**kwargs) |
|
|
|
|
|
|
|
img, pred_x0 = outs |
|
if callback: callback(i) |
|
if img_callback: img_callback(pred_x0, i) |
|
|
|
if index % log_every_t == 0 or index == total_steps - 1: |
|
intermediates['x_inter'].append(img) |
|
intermediates['pred_x0'].append(pred_x0) |
|
|
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, |
|
unconditional_guidance_scale=1., unconditional_conditioning=None, |
|
uc_type=None, cfg_img=None,mask=None,x0=None,guidance_rescale=0.0, **kwargs): |
|
b, *_, device = *x.shape, x.device |
|
if x.dim() == 5: |
|
is_video = True |
|
else: |
|
is_video = False |
|
if cfg_img is None: |
|
cfg_img = unconditional_guidance_scale |
|
|
|
unconditional_conditioning_img_nonetext = kwargs['unconditional_conditioning_img_nonetext'] |
|
|
|
|
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: |
|
model_output = self.model.apply_model(x, t, c, **kwargs) |
|
else: |
|
|
|
e_t_cond = self.model.apply_model(x, t, c, **kwargs) |
|
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs) |
|
e_t_uncond_img = self.model.apply_model(x, t, unconditional_conditioning_img_nonetext, **kwargs) |
|
|
|
model_output = e_t_uncond + cfg_img * (e_t_uncond_img - e_t_uncond) + unconditional_guidance_scale * (e_t_cond - e_t_uncond_img) |
|
if guidance_rescale > 0.0: |
|
model_output = rescale_noise_cfg(model_output, e_t_cond, guidance_rescale=guidance_rescale) |
|
|
|
if self.model.parameterization == "v": |
|
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) |
|
else: |
|
e_t = model_output |
|
|
|
if score_corrector is not None: |
|
assert self.model.parameterization == "eps", 'not implemented' |
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev |
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas |
|
sigmas = self.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas |
|
|
|
|
|
if is_video: |
|
size = (b, 1, 1, 1, 1) |
|
else: |
|
size = (b, 1, 1, 1) |
|
a_t = torch.full(size, alphas[index], device=device) |
|
a_prev = torch.full(size, alphas_prev[index], device=device) |
|
sigma_t = torch.full(size, sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device) |
|
|
|
|
|
if self.model.parameterization != "v": |
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
else: |
|
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) |
|
|
|
if self.model.use_dynamic_rescale: |
|
scale_t = torch.full(size, self.ddim_scale_arr[index], device=device) |
|
prev_scale_t = torch.full(size, self.ddim_scale_arr_prev[index], device=device) |
|
rescale = (prev_scale_t / scale_t) |
|
pred_x0 *= rescale |
|
|
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t |
|
|
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
|
|
return x_prev, pred_x0 |
|
|
|
@torch.no_grad() |
|
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, |
|
use_original_steps=False, callback=None): |
|
|
|
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps |
|
timesteps = timesteps[:t_start] |
|
|
|
time_range = np.flip(timesteps) |
|
total_steps = timesteps.shape[0] |
|
print(f"Running DDIM Sampling with {total_steps} timesteps") |
|
|
|
iterator = tqdm(time_range, desc='Decoding image', total=total_steps) |
|
x_dec = x_latent |
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) |
|
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning) |
|
if callback: callback(i) |
|
return x_dec |
|
|
|
@torch.no_grad() |
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): |
|
|
|
|
|
if use_original_steps: |
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod |
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod |
|
else: |
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) |
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas |
|
|
|
if noise is None: |
|
noise = torch.randn_like(x0) |
|
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + |
|
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) |