File size: 31,772 Bytes
ef16dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py

import inspect
from typing import Callable, List, Optional, Union
from dataclasses import dataclass

import math
import numpy as np
import torch
from tqdm import tqdm

from torchvision import transforms as T
from PIL import Image

from diffusers.utils import is_accelerate_available
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from diffusers.utils import deprecate, logging, BaseOutput

from einops import rearrange, repeat

from ..models.unet import UNet3DConditionModel
from ..utils.frameinit_utils import freq_mix_3d, get_freq_filter


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# copied from https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L59C1-L70C21
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


@dataclass
class AnimationPipelineOutput(BaseOutput):
    videos: Union[torch.Tensor, np.ndarray]


class AutoregressiveAnimationPipeline(DiffusionPipeline):
    _optional_components = []

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet3DConditionModel,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

        self.freq_filter = None

    @torch.no_grad()
    def init_filter(self, video_length, height, width, filter_params):
        # initialize frequency filter for noise reinitialization
        batch_size = 1
        num_channels_latents = self.unet.config.in_channels
        filter_shape = [
            batch_size, 
            num_channels_latents, 
            video_length, 
            height // self.vae_scale_factor, 
            width // self.vae_scale_factor
        ]
        # self.freq_filter = get_freq_filter(filter_shape, device=self._execution_device, params=filter_params)
        self.freq_filter = get_freq_filter(
            filter_shape, 
            device=self._execution_device, 
            filter_type=filter_params.method,
            n=filter_params.n if filter_params.method=="butterworth" else None,
            d_s=filter_params.d_s,
            d_t=filter_params.d_t
        )

    def enable_vae_slicing(self):
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        self.vae.disable_slicing()

    def enable_sequential_cpu_offload(self, gpu_id=0):
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)


    @property
    def _execution_device(self):
        if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = text_inputs.attention_mask.to(device)
        else:
            attention_mask = None

        text_embeddings = self.text_encoder(
            text_input_ids.to(device),
            attention_mask=attention_mask,
        )
        text_embeddings = text_embeddings[0]

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance is not None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            uncond_embeddings = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            uncond_embeddings = uncond_embeddings[0]

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
            uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            if do_classifier_free_guidance == "text":
                text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
            elif do_classifier_free_guidance == "both":
                text_embeddings = torch.cat([uncond_embeddings, uncond_embeddings, text_embeddings])

        return text_embeddings

    def decode_latents(self, latents, first_frames=None):
        video_length = latents.shape[2]
        latents = 1 / self.vae.config.scaling_factor * latents
        latents = rearrange(latents, "b c f h w -> (b f) c h w")
        # video = self.vae.decode(latents).sample
        video = []
        for frame_idx in tqdm(range(latents.shape[0]), **self._progress_bar_config):
            video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
        video = torch.cat(video)
        video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)

        if first_frames is not None:
            first_frames = first_frames.unsqueeze(2)
            video = torch.cat([first_frames, video], dim=2)

        video = (video / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        video = video.cpu().float().numpy()
        return video

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, prompt, height, width, callback_steps, first_frame_paths=None):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if first_frame_paths is not None and (not isinstance(prompt, str) and not isinstance(first_frame_paths, list)):
            raise ValueError(f"`first_frame_paths` has to be of type `str` or `list` but is {type(first_frame_paths)}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None, noise_sampling_method="vanilla", noise_alpha=1.0):
        shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )
        if latents is None:
            rand_device = "cpu" if device.type == "mps" else device

            if isinstance(generator, list):
                # shape = shape
                shape = (1,) + shape[1:]
                if noise_sampling_method == "vanilla":
                    latents = [
                        torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
                        for i in range(batch_size)
                    ]
                elif noise_sampling_method == "pyoco_mixed":
                    base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
                    latents = []
                    noise_alpha_squared = noise_alpha ** 2
                    for i in range(batch_size):
                        base_latent = torch.randn(base_shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
                        ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
                        latents.append(base_latent + ind_latent)
                elif noise_sampling_method == "pyoco_progressive":
                    latents = []
                    noise_alpha_squared = noise_alpha ** 2
                    for i in range(batch_size):
                        latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
                        ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
                        for j in range(1, video_length):
                            latent[:, :, j, :, :] = latent[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latent[:, :, j, :, :]
                        latents.append(latent)
                latents = torch.cat(latents, dim=0).to(device)
            else:
                if noise_sampling_method == "vanilla":
                    latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
                elif noise_sampling_method == "pyoco_mixed":
                    noise_alpha_squared = noise_alpha ** 2
                    base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
                    base_latents = torch.randn(base_shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
                    ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
                    latents = base_latents + ind_latents
                elif noise_sampling_method == "pyoco_progressive":
                    noise_alpha_squared = noise_alpha ** 2
                    latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype)
                    ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared))
                    for j in range(1, video_length):
                        latents[:, :, j, :, :] = latents[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latents[:, :, j, :, :]
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        video_length: Optional[int],
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale_txt: float = 7.5,
        guidance_scale_img: float = 2.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "tensor",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        # additional
        first_frame_paths: Optional[Union[str, List[str]]] = None,
        first_frames: Optional[torch.FloatTensor] = None,
        noise_sampling_method: str = "vanilla",
        noise_alpha: float = 1.0,
        guidance_rescale: float = 0.0,
        frame_stride: Optional[int] = None,
        autoregress_steps: int = 3,
        use_frameinit: bool = False,
        frameinit_noise_level: int = 999,
        **kwargs,
    ):
        if first_frame_paths is not None and first_frames is not None:
            raise ValueError("Only one of `first_frame_paths` and `first_frames` can be passed.")
        # Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps, first_frame_paths)

        # Define call parameters
        # batch_size = 1 if isinstance(prompt, str) else len(prompt)
        batch_size = 1
        if latents is not None:
            batch_size = latents.shape[0]
        if isinstance(prompt, list):
            batch_size = len(prompt)
            first_frame_input = first_frame_paths if first_frame_paths is not None else first_frames
            if first_frame_input is not None:
                assert len(prompt) == len(first_frame_input), "prompt and first_frame_paths should have the same length"

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = None
        # two guidance mode: text and text+image
        if guidance_scale_txt > 1.0:
            do_classifier_free_guidance = "text"
        if guidance_scale_img > 1.0:
            do_classifier_free_guidance = "both"

        # Encode input prompt
        prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
        if negative_prompt is not None:
            negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size 
        text_embeddings = self._encode_prompt(
            prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
        )

        # Encode input first frame
        first_frame_latents = None
        if first_frame_paths is not None:
            first_frame_paths = first_frame_paths if isinstance(first_frame_paths, list) else [first_frame_paths] * batch_size
            img_transform = T.Compose([
                T.ToTensor(),
                T.Resize(height, antialias=None),
                T.CenterCrop((height, width)),
                T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ])
            first_frames = []
            for first_frame_path in first_frame_paths:
                first_frame = Image.open(first_frame_path).convert('RGB')
                first_frame = img_transform(first_frame).unsqueeze(0)
                first_frames.append(first_frame)
            first_frames = torch.cat(first_frames, dim=0)
        if first_frames is not None:
            first_frames = first_frames.to(device, dtype=self.vae.dtype)
            first_frame_latents = self.vae.encode(first_frames).latent_dist
            first_frame_latents = first_frame_latents.sample()
            first_frame_latents = first_frame_latents * self.vae.config.scaling_factor # b, c, h, w
            first_frame_latents = repeat(first_frame_latents, "b c h w -> (b n) c h w", n=num_videos_per_prompt)
            first_frames = repeat(first_frames, "b c h w -> (b n) c h w", n=num_videos_per_prompt)

        full_video_latent = torch.zeros(batch_size * num_videos_per_prompt, self.unet.config.in_channels, video_length * autoregress_steps - autoregress_steps + 1, height // self.vae_scale_factor, width // self.vae_scale_factor, device=device, dtype=self.vae.dtype)

        start_idx = 0
        for ar_step in range(autoregress_steps):
            # Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

            # Prepare latent variables
            num_channels_latents = self.unet.config.in_channels
            latents = self.prepare_latents(
                batch_size * num_videos_per_prompt,
                num_channels_latents,
                video_length,
                height,
                width,
                text_embeddings.dtype,
                device,
                generator,
                latents,
                noise_sampling_method,
                noise_alpha,
            )
            latents_dtype = latents.dtype
            
            if use_frameinit:
                current_diffuse_timestep = frameinit_noise_level # diffuse to noise level
                diffuse_timesteps = torch.full((batch_size,),int(current_diffuse_timestep))
                diffuse_timesteps = diffuse_timesteps.long()
                first_frames_static_vid = repeat(first_frame_latents, "b c h w -> b c t h w", t=video_length)
                z_T = self.scheduler.add_noise(
                    original_samples=first_frames_static_vid.to(device), 
                    noise=latents.to(device), 
                    timesteps=diffuse_timesteps.to(device)
                )
                latents = freq_mix_3d(z_T.to(dtype=torch.float32), latents, LPF=self.freq_filter)
                latents = latents.to(dtype=latents_dtype)
            
            if first_frame_latents is not None:
                first_frame_noisy_latent = latents[:, :, 0, :, :]
                latents = latents[:, :, 1:, :, :]

            # Prepare extra step kwargs.
            extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

            # Denoising loop
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    # expand the latents if we are doing classifier free guidance
                    if do_classifier_free_guidance is None:
                        latent_model_input = latents
                    elif do_classifier_free_guidance == "text":
                        latent_model_input = torch.cat([latents] * 2)
                    elif do_classifier_free_guidance == "both":
                        latent_model_input = torch.cat([latents] * 3)
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                    if first_frame_latents is not None:
                        if do_classifier_free_guidance is None:
                            first_frame_latents_input = first_frame_latents
                        elif do_classifier_free_guidance == "text":
                            first_frame_latents_input = torch.cat([first_frame_latents] * 2)
                        elif do_classifier_free_guidance == "both":
                            first_frame_latents_input = torch.cat([first_frame_noisy_latent, first_frame_latents, first_frame_latents])

                        first_frame_latents_input = first_frame_latents_input.unsqueeze(2)

                        # predict the noise residual
                        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, first_frame_latents=first_frame_latents_input, frame_stride=frame_stride).sample.to(dtype=latents_dtype)
                    else:
                        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
                    # noise_pred = []
                    # import pdb
                    # pdb.set_trace()
                    # for batch_idx in range(latent_model_input.shape[0]):
                    #     noise_pred_single = self.unet(latent_model_input[batch_idx:batch_idx+1], t, encoder_hidden_states=text_embeddings[batch_idx:batch_idx+1]).sample.to(dtype=latents_dtype)
                    #     noise_pred.append(noise_pred_single)
                    # noise_pred = torch.cat(noise_pred)

                    # perform guidance
                    if do_classifier_free_guidance:
                        if do_classifier_free_guidance == "text":
                            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                            noise_pred = noise_pred_uncond + guidance_scale_txt * (noise_pred_text - noise_pred_uncond)
                        elif do_classifier_free_guidance == "both":
                            noise_pred_uncond, noise_pred_img, noise_pred_both = noise_pred.chunk(3)
                            noise_pred = noise_pred_uncond + guidance_scale_img * (noise_pred_img - noise_pred_uncond) + guidance_scale_txt * (noise_pred_both - noise_pred_img)
                    
                    if do_classifier_free_guidance and guidance_rescale > 0.0:
                        # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                        # currently only support text guidance
                        noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            callback(i, t, latents)

            # Post-processing
            
            latents = torch.cat([first_frame_latents.unsqueeze(2), latents], dim=2)
            first_frame_latents = latents[:, :, -1, :, :]
            full_video_latent[:, :, start_idx:start_idx + video_length, :, :] = latents

            latents = None
            start_idx += (video_length - 1)

        # video = self.decode_latents(latents, first_frames)
        video = self.decode_latents(full_video_latent)

        # Convert to tensor
        if output_type == "tensor":
            video = torch.from_numpy(video)

        if not return_dict:
            return video

        return AnimationPipelineOutput(videos=video)