Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,017 Bytes
ef16dc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import imageio
import numpy as np
from typing import Union
import torch
import torchvision
import torch.distributed as dist
import wandb
from tqdm import tqdm
from einops import rearrange
from torchmetrics.image.fid import _compute_fid
def zero_rank_print(s):
if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, wandb=False, global_step=0, format="gif"):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
if wandb:
wandb_video = wandb.Video(outputs, fps=fps)
wandb.log({"val_videos": wandb_video}, step=global_step)
os.makedirs(os.path.dirname(path), exist_ok=True)
if format == "gif":
imageio.mimsave(path, outputs, fps=fps)
elif format == "mp4":
torchvision.io.write_video(path, np.array(outputs), fps=fps, video_codec='h264', options={'crf': '10'})
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, first_frame_latents, frame_stride, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt, first_frame_latents, frame_stride):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, first_frame_latents, frame_stride, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt="", first_frame_latents=None, frame_stride=3):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt, first_frame_latents, frame_stride)
return ddim_latents
def compute_fid(real_features, fake_features, num_features, device):
orig_dtype = real_features.dtype
mx_num_feats = (num_features, num_features)
real_features_sum = torch.zeros(num_features).double().to(device)
real_features_cov_sum = torch.zeros(mx_num_feats).double().to(device)
real_features_num_samples = torch.tensor(0).long().to(device)
fake_features_sum = torch.zeros(num_features).double().to(device)
fake_features_cov_sum = torch.zeros(mx_num_feats).double().to(device)
fake_features_num_samples = torch.tensor(0).long().to(device)
real_features = real_features.double()
fake_features = fake_features.double()
real_features_sum += real_features.sum(dim=0)
real_features_cov_sum += real_features.t().mm(real_features)
real_features_num_samples += real_features.shape[0]
fake_features_sum += fake_features.sum(dim=0)
fake_features_cov_sum += fake_features.t().mm(fake_features)
fake_features_num_samples += fake_features.shape[0]
"""Calculate FID score based on accumulated extracted features from the two distributions."""
if real_features_num_samples < 2 or fake_features_num_samples < 2:
raise RuntimeError("More than one sample is required for both the real and fake distributed to compute FID")
mean_real = (real_features_sum / real_features_num_samples).unsqueeze(0)
mean_fake = (fake_features_sum / fake_features_num_samples).unsqueeze(0)
cov_real_num = real_features_cov_sum - real_features_num_samples * mean_real.t().mm(mean_real)
cov_real = cov_real_num / (real_features_num_samples - 1)
cov_fake_num = fake_features_cov_sum - fake_features_num_samples * mean_fake.t().mm(mean_fake)
cov_fake = cov_fake_num / (fake_features_num_samples - 1)
return _compute_fid(mean_real.squeeze(0), cov_real, mean_fake.squeeze(0), cov_fake).to(orig_dtype)
def compute_inception_score(gen_probs, num_splits=10):
num_gen = gen_probs.shape[0]
gen_probs = gen_probs.detach().cpu().numpy()
scores = []
np.random.RandomState(42).shuffle(gen_probs)
for i in range(num_splits):
part = gen_probs[i * num_gen // num_splits : (i + 1) * num_gen // num_splits]
kl = part * (np.log(part) - np.log(np.mean(part, axis=0, keepdims=True)))
kl = np.mean(np.sum(kl, axis=1))
scores.append(np.exp(kl))
return float(np.mean(scores)), float(np.std(scores))
# idx = torch.randperm(features.shape[0])
# features = features[idx]
# # calculate probs and logits
# prob = features.softmax(dim=1)
# log_prob = features.log_softmax(dim=1)
# # split into groups
# prob = prob.chunk(splits, dim=0)
# log_prob = log_prob.chunk(splits, dim=0)
# # calculate score per split
# mean_prob = [p.mean(dim=0, keepdim=True) for p in prob]
# kl_ = [p * (log_p - m_p.log()) for p, log_p, m_p in zip(prob, log_prob, mean_prob)]
# kl_ = [k.sum(dim=1).mean().exp() for k in kl_]
# kl = torch.stack(kl_)
# return mean and std
# return kl.mean(), kl.std() |