File size: 7,017 Bytes
ef16dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import imageio
import numpy as np
from typing import Union

import torch
import torchvision
import torch.distributed as dist
import wandb

from tqdm import tqdm
from einops import rearrange

from torchmetrics.image.fid import _compute_fid


def zero_rank_print(s):
    if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, wandb=False, global_step=0, format="gif"):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    if wandb:
        wandb_video = wandb.Video(outputs, fps=fps)
        wandb.log({"val_videos": wandb_video}, step=global_step)
        
    os.makedirs(os.path.dirname(path), exist_ok=True)
    if format == "gif":
        imageio.mimsave(path, outputs, fps=fps)
    elif format == "mp4":
        torchvision.io.write_video(path, np.array(outputs), fps=fps, video_codec='h264', options={'crf': '10'})

# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, first_frame_latents, frame_stride, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt, first_frame_latents, frame_stride):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, first_frame_latents, frame_stride, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt="", first_frame_latents=None, frame_stride=3):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt, first_frame_latents, frame_stride)
    return ddim_latents


def compute_fid(real_features, fake_features, num_features, device):
    orig_dtype = real_features.dtype

    mx_num_feats = (num_features, num_features)
    real_features_sum = torch.zeros(num_features).double().to(device)
    real_features_cov_sum = torch.zeros(mx_num_feats).double().to(device)
    real_features_num_samples = torch.tensor(0).long().to(device)

    fake_features_sum = torch.zeros(num_features).double().to(device)
    fake_features_cov_sum = torch.zeros(mx_num_feats).double().to(device)
    fake_features_num_samples = torch.tensor(0).long().to(device)

    real_features = real_features.double()
    fake_features = fake_features.double()

    real_features_sum += real_features.sum(dim=0)
    real_features_cov_sum += real_features.t().mm(real_features)
    real_features_num_samples += real_features.shape[0]

    fake_features_sum += fake_features.sum(dim=0)
    fake_features_cov_sum += fake_features.t().mm(fake_features)
    fake_features_num_samples += fake_features.shape[0]

    """Calculate FID score based on accumulated extracted features from the two distributions."""
    if real_features_num_samples < 2 or fake_features_num_samples < 2:
        raise RuntimeError("More than one sample is required for both the real and fake distributed to compute FID")
    mean_real = (real_features_sum / real_features_num_samples).unsqueeze(0)
    mean_fake = (fake_features_sum / fake_features_num_samples).unsqueeze(0)

    cov_real_num = real_features_cov_sum - real_features_num_samples * mean_real.t().mm(mean_real)
    cov_real = cov_real_num / (real_features_num_samples - 1)
    cov_fake_num = fake_features_cov_sum - fake_features_num_samples * mean_fake.t().mm(mean_fake)
    cov_fake = cov_fake_num / (fake_features_num_samples - 1)
    return _compute_fid(mean_real.squeeze(0), cov_real, mean_fake.squeeze(0), cov_fake).to(orig_dtype)


def compute_inception_score(gen_probs, num_splits=10):
    num_gen = gen_probs.shape[0]
    gen_probs = gen_probs.detach().cpu().numpy()
    scores = []
    np.random.RandomState(42).shuffle(gen_probs)
    for i in range(num_splits):
        part = gen_probs[i * num_gen // num_splits : (i + 1) * num_gen // num_splits]
        kl = part * (np.log(part) - np.log(np.mean(part, axis=0, keepdims=True)))
        kl = np.mean(np.sum(kl, axis=1))
        scores.append(np.exp(kl))
    return float(np.mean(scores)), float(np.std(scores))
    # idx = torch.randperm(features.shape[0])
    # features = features[idx]
    # # calculate probs and logits
    # prob = features.softmax(dim=1)
    # log_prob = features.log_softmax(dim=1)

    # # split into groups
    # prob = prob.chunk(splits, dim=0)
    # log_prob = log_prob.chunk(splits, dim=0)

    # # calculate score per split
    # mean_prob = [p.mean(dim=0, keepdim=True) for p in prob]
    # kl_ = [p * (log_p - m_p.log()) for p, log_p, m_p in zip(prob, log_prob, mean_prob)]
    # kl_ = [k.sum(dim=1).mean().exp() for k in kl_]
    # kl = torch.stack(kl_)

    # return mean and std
    # return kl.mean(), kl.std()