Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,171 Bytes
ef16dc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
import os
import math
import wandb
import random
import time
import logging
import inspect
import argparse
import datetime
import numpy as np
from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange, repeat
from omegaconf import OmegaConf
from typing import Dict, Optional, Tuple
import torch
import torch.nn.functional as F
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from diffusers.training_utils import EMAModel
import transformers
from transformers import CLIPTextModel, CLIPTokenizer
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from consisti2v.data.dataset import WebVid10M, Pexels, JointDataset
from consisti2v.models.videoldm_unet import VideoLDMUNet3DConditionModel
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline
from consisti2v.utils.util import save_videos_grid
logger = get_logger(__name__, log_level="INFO")
def main(
name: str,
use_wandb: bool,
is_image: bool,
output_dir: str,
pretrained_model_path: str,
train_data: Dict,
validation_data: Dict,
cfg_random_null_text_ratio: float = 0.1,
cfg_random_null_img_ratio: float = 0.0,
resume_from_checkpoint: Optional[str] = None,
unet_additional_kwargs: Dict = {},
use_ema: bool = False,
ema_decay: float = 0.9999,
noise_scheduler_kwargs = None,
max_train_epoch: int = -1,
max_train_steps: int = 100,
validation_steps: int = 100,
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_warmup_steps: int = 0,
lr_scheduler: str = "constant",
trainable_modules: Tuple[str] = (None, ),
num_workers: int = 32,
train_batch_size: int = 1,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = False,
checkpointing_epochs: int = 5,
checkpointing_steps: int = -1,
mixed_precision: Optional[str] = "fp16",
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = 42,
is_debug: bool = False,
):
check_min_version("0.10.0.dev0")
*_, config = inspect.getargvalues(inspect.currentframe())
config = {k: v for k, v in config.items() if k != 'config' and k != '_'}
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True if not is_image else False)
init_kwargs = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=3600))
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
kwargs_handlers=[ddp_kwargs, init_kwargs],
)
if seed is not None:
set_seed(seed)
# Logging folder
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
output_dir = os.path.join(output_dir, folder_name)
if is_debug and os.path.exists(output_dir):
os.system(f"rm -rf {output_dir}")
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if accelerator.is_main_process and (not is_debug) and use_wandb:
project_name = "text_image_to_video" if not is_image else "image_finetune"
wandb.init(project=project_name, name=folder_name, config=config)
accelerator.wait_for_everyone()
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# TODO: change all datasets to fps+duration in the future
if train_data.dataset == "pexels":
train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps
elif train_data.dataset == "joint":
if train_data.sample_duration is not None:
train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps
# Load scheduler, tokenizer and models.
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
unet = VideoLDMUNet3DConditionModel.from_pretrained(
pretrained_model_path,
subfolder="unet",
variant=unet_additional_kwargs['variant'],
use_temporal=True if not is_image else False,
temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'],
augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'],
n_frames=train_data.sample_n_frames if not is_image else 2,
n_temp_heads=unet_additional_kwargs['n_temp_heads'],
first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'],
use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'],
use_safetensors=True
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.train()
if use_ema:
ema_unet = VideoLDMUNet3DConditionModel.from_pretrained(
pretrained_model_path,
subfolder="unet",
variant=unet_additional_kwargs['variant'],
use_temporal=True if not is_image else False,
temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'],
augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'],
n_frames=train_data.sample_n_frames if not is_image else 2,
n_temp_heads=unet_additional_kwargs['n_temp_heads'],
first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'],
use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'],
use_safetensors=True
)
ema_unet = EMAModel(ema_unet.parameters(), decay=ema_decay, model_cls=VideoLDMUNet3DConditionModel, model_config=ema_unet.config)
# Set unet trainable parameters
train_all_parameters = False
for trainable_module_name in trainable_modules:
if trainable_module_name == 'all':
unet.requires_grad_(True)
train_all_parameters = True
break
if not train_all_parameters:
unet.requires_grad_(False)
for name, param in unet.named_parameters():
for trainable_module_name in trainable_modules:
if trainable_module_name in name:
param.requires_grad = True
break
# Enable xformers
if enable_xformers_memory_efficient_attention and int(torch.__version__.split(".")[0]) < 2:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if use_ema:
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "unet"))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
if use_ema:
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), VideoLDMUNet3DConditionModel)
ema_unet.load_state_dict(load_model.state_dict())
ema_unet.to(accelerator.device)
del load_model
for i in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = VideoLDMUNet3DConditionModel.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable gradient checkpointing
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
if scale_lr:
learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes)
trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))
optimizer = torch.optim.AdamW(
trainable_params,
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
logger.info(f"trainable params number: {len(trainable_params)}")
logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
# Get the training dataset
if train_data['dataset'] == "webvid":
train_dataset = WebVid10M(**train_data, is_image=is_image)
elif train_data['dataset'] == "pexels":
train_dataset = Pexels(**train_data, is_image=is_image)
elif train_data['dataset'] == "joint":
train_dataset = JointDataset(**train_data, is_image=is_image)
else:
raise ValueError(f"Unknown dataset {train_data['dataset']}")
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
batch_size=train_batch_size,
num_workers=num_workers,
pin_memory=True,
)
# Get the training iteration
if max_train_steps == -1:
assert max_train_epoch != -1
max_train_steps = max_train_epoch * len(train_dataloader)
if checkpointing_steps == -1:
assert checkpointing_epochs != -1
checkpointing_steps = checkpointing_epochs * len(train_dataloader)
# Scheduler
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
# Validation pipeline
validation_pipeline = ConditionalAnimationPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
)
validation_pipeline.enable_vae_slicing()
# Prepare everything with our `accelerator`.
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if use_ema:
ema_unet.to(accelerator.device)
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Load pretrained unet weights
if resume_from_checkpoint is not None:
logger.info(f"Resuming from checkpoint: {resume_from_checkpoint}")
accelerator.load_state(resume_from_checkpoint)
global_step = int(resume_from_checkpoint.split("-")[-1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
logger.info(f"global_step: {global_step}")
logger.info(f"first_epoch: {first_epoch}")
else:
initial_global_step = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(0, max_train_steps), initial=initial_global_step, desc="Steps", disable=not accelerator.is_main_process)
for epoch in range(first_epoch, num_train_epochs):
train_loss = 0.0
train_grad_norm = 0.0
data_loading_time = 0.0
prepare_everything_time = 0.0
network_forward_time = 0.0
network_backward_time = 0.0
t0 = time.time()
for step, batch in enumerate(train_dataloader):
t1 = time.time()
if cfg_random_null_text_ratio > 0.0:
batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']]
# Data batch sanity check
if accelerator.is_main_process and epoch == first_epoch and step == 0:
pixel_values, texts = batch['pixel_values'].cpu(), batch['text']
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w")
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)):
pixel_value = pixel_value[None, ...]
save_videos_grid(pixel_value, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'no_text-{idx}'}.gif", rescale=True)
### >>>> Training >>>> ###
with accelerator.accumulate(unet):
# Convert videos to latent space
pixel_values = batch["pixel_values"].to(weight_dtype)
video_length = pixel_values.shape[1]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = vae.encode(pixel_values).latent_dist
latents = latents.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * vae.config.scaling_factor
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
# Get first frame latents
first_frame_latents = latents[:, :, 0:1, :, :]
# Sample noise that we'll add to the latents
if unet_additional_kwargs['noise_sampling_method'] == 'vanilla':
noise = torch.randn_like(latents)
elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_mixed':
noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2
shared_noise = torch.randn_like(latents[:, :, 0:1, :, :]) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared))
noise = shared_noise + ind_noise
elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_progressive':
noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2
noise = torch.randn_like(latents)
ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared))
for i in range(1, noise.shape[2]):
noise[:, :, i, :, :] = noise[:, :, i - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_noise[:, :, i, :, :]
else:
raise ValueError(f"Unknown noise sampling method {unet_additional_kwargs['noise_sampling_method']}")
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
if cfg_random_null_img_ratio > 0.0:
for i in range(first_frame_latents.shape[0]):
if random.random() <= cfg_random_null_img_ratio:
first_frame_latents[i, :, :, :, :] = noisy_latents[i, :, 0:1, :, :]
# Remove the first noisy latent from the latents if we're conditioning on the first frame
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
noisy_latents = noisy_latents[:, :, 1:, :, :]
# Get the text embedding for conditioning
prompt_ids = tokenizer(
batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids.to(latents.device)
encoder_hidden_states = text_encoder(prompt_ids)[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
timesteps = repeat(timesteps, "b -> b f", f=video_length)
timesteps = rearrange(timesteps, "b f -> (b f)")
frame_stride = None
if unet_additional_kwargs["use_frame_stride_condition"]:
frame_stride = batch['stride'].to(latents.device)
frame_stride = frame_stride.long()
frame_stride = repeat(frame_stride, "b -> b f", f=video_length)
frame_stride = rearrange(frame_stride, "b f -> (b f)")
t2 = time.time()
# Predict the noise residual and compute loss
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample
loss = F.mse_loss(model_pred.float(), target.float()[:, :, 1:, :, :], reduction="mean")
else:
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
t3 = time.time()
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
train_loss += avg_loss.item() / gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
avg_grad_norm = accelerator.gather(grad_norm.repeat(train_batch_size)).mean()
train_grad_norm += avg_grad_norm.item() / gradient_accumulation_steps
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
t4 = time.time()
data_loading_time += (t1 - t0) / gradient_accumulation_steps
prepare_everything_time += (t2 - t1) / gradient_accumulation_steps
network_forward_time += (t3 - t2) / gradient_accumulation_steps
network_backward_time += (t4 - t3) / gradient_accumulation_steps
t0 = time.time()
### <<<< Training <<<< ###
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if use_ema:
ema_unet.step(unet.parameters())
progress_bar.update(1)
global_step += 1
# Wandb logging
if accelerator.is_main_process and (not is_debug) and use_wandb:
wandb.log({"metrics/train_loss": train_loss}, step=global_step)
wandb.log({"metrics/train_grad_norm": train_grad_norm}, step=global_step)
wandb.log({"profiling/train_data_loading_time": data_loading_time}, step=global_step)
wandb.log({"profiling/train_prepare_everything_time": prepare_everything_time}, step=global_step)
wandb.log({"profiling/train_network_forward_time": network_forward_time}, step=global_step)
wandb.log({"profiling/train_network_backward_time": network_backward_time}, step=global_step)
# accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
train_grad_norm = 0.0
data_loading_time = 0.0
prepare_everything_time = 0.0
network_forward_time = 0.0
network_backward_time = 0.0
# Save checkpoint
if global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path} (global_step: {global_step})")
# Periodically validation
if accelerator.is_main_process and global_step % validation_steps == 0:
if use_ema:
# Store the UNet parameters temporarily and load the EMA parameters to perform inference.
ema_unet.store(unet.parameters())
ema_unet.copy_to(unet.parameters())
samples = []
wandb_samples = []
generator = torch.Generator(device=latents.device)
generator.manual_seed(seed)
height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size
width = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size
prompts = validation_data.prompts
first_frame_paths = [None] * len(prompts)
if unet_additional_kwargs["first_frame_condition_mode"] != "none":
first_frame_paths = validation_data.path_to_first_frames
for idx, (prompt, first_frame_path) in enumerate(zip(prompts, first_frame_paths)):
sample = validation_pipeline(
prompt,
generator = generator,
video_length = train_data.sample_n_frames if not is_image else 2,
height = height,
width = width,
first_frame_paths = first_frame_path,
noise_sampling_method = unet_additional_kwargs['noise_sampling_method'],
noise_alpha = float(unet_additional_kwargs['noise_alpha']),
**validation_data,
).videos
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif")
samples.append(sample)
numpy_sample = (sample.squeeze(0).permute(1, 0, 2, 3) * 255).cpu().numpy().astype(np.uint8)
wandb_video = wandb.Video(numpy_sample, fps=8, caption=prompt)
wandb_samples.append(wandb_video)
if (not is_debug) and use_wandb:
val_title = 'val_videos'
wandb.log({val_title: wandb_samples}, step=global_step)
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample-{global_step}.gif"
save_videos_grid(samples, save_path)
logger.info(f"Saved samples to {save_path}")
if use_ema:
# Switch back to the original UNet parameters.
ema_unet.restore(unet.parameters())
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if accelerator.is_main_process and (not is_debug) and use_wandb:
wandb.log({"metrics/train_lr": lr_scheduler.get_last_lr()[0]}, step=global_step)
if global_step >= max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
pipeline = ConditionalAnimationPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=noise_scheduler,
)
pipeline.save_pretrained(f"{output_dir}/final_checkpoint")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--name", "-n", type=str, default="")
parser.add_argument("--wandb", action="store_true")
parser.add_argument("optional_args", nargs='*', default=[])
args = parser.parse_args()
name = args.name + "_" + Path(args.config).stem
config = OmegaConf.load(args.config)
if args.optional_args:
modified_config = OmegaConf.from_dotlist(args.optional_args)
config = OmegaConf.merge(config, modified_config)
main(name=name, use_wandb=args.wandb, **config)
|