File size: 28,171 Bytes
ef16dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import os
import math
import wandb
import random
import time
import logging
import inspect
import argparse
import datetime
import numpy as np

from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange, repeat
from omegaconf import OmegaConf
from typing import Dict, Optional, Tuple

import torch
import torch.nn.functional as F

import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from diffusers.training_utils import EMAModel

import transformers
from transformers import CLIPTextModel, CLIPTokenizer

from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
from accelerate.logging import get_logger
from accelerate.utils import set_seed

from consisti2v.data.dataset import WebVid10M, Pexels, JointDataset
from consisti2v.models.videoldm_unet import VideoLDMUNet3DConditionModel
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline
from consisti2v.utils.util import save_videos_grid

logger = get_logger(__name__, log_level="INFO")

def main(
    name: str,
    use_wandb: bool,

    is_image: bool,
    
    output_dir: str,
    pretrained_model_path: str,

    train_data: Dict,
    validation_data: Dict,

    cfg_random_null_text_ratio: float = 0.1,
    cfg_random_null_img_ratio: float = 0.0,
    
    resume_from_checkpoint: Optional[str] = None,
    unet_additional_kwargs: Dict = {},
    use_ema: bool = False,
    ema_decay: float = 0.9999,
    noise_scheduler_kwargs = None,
    
    max_train_epoch: int = -1,
    max_train_steps: int = 100,
    validation_steps: int = 100,

    learning_rate: float = 3e-5,
    scale_lr: bool = False,
    lr_warmup_steps: int = 0,
    lr_scheduler: str = "constant",

    trainable_modules: Tuple[str] = (None, ),
    num_workers: int = 32,
    train_batch_size: int = 1,
    adam_beta1: float = 0.9,
    adam_beta2: float = 0.999,
    adam_weight_decay: float = 1e-2,
    adam_epsilon: float = 1e-08,
    max_grad_norm: float = 1.0,
    gradient_accumulation_steps: int = 1,
    gradient_checkpointing: bool = False,
    checkpointing_epochs: int = 5,
    checkpointing_steps: int = -1,

    mixed_precision: Optional[str] = "fp16",
    enable_xformers_memory_efficient_attention: bool = True,

    seed: Optional[int] = 42,
    is_debug: bool = False,
):
    check_min_version("0.10.0.dev0")
    *_, config = inspect.getargvalues(inspect.currentframe())
    config = {k: v for k, v in config.items() if k != 'config' and k != '_'}

    ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True if not is_image else False)
    init_kwargs = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=3600))

    accelerator = Accelerator(
        gradient_accumulation_steps=gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        kwargs_handlers=[ddp_kwargs, init_kwargs],
    )
    
    if seed is not None:
        set_seed(seed)

    # Logging folder
    folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
    output_dir = os.path.join(output_dir, folder_name)
    if is_debug and os.path.exists(output_dir):
        os.system(f"rm -rf {output_dir}")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)

    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    if accelerator.is_main_process and (not is_debug) and use_wandb:
        project_name = "text_image_to_video" if not is_image else "image_finetune"
        wandb.init(project=project_name, name=folder_name, config=config)
    accelerator.wait_for_everyone()

    # Handle the output folder creation
    if accelerator.is_main_process:
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(f"{output_dir}/samples", exist_ok=True)
        os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
        os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
        OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))

    # TODO: change all datasets to fps+duration in the future
    if train_data.dataset == "pexels":
        train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps
    elif train_data.dataset == "joint":
        if train_data.sample_duration is not None:
            train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps
    # Load scheduler, tokenizer and models.
    noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
    vae             = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
    tokenizer       = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    text_encoder    = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
    unet            = VideoLDMUNet3DConditionModel.from_pretrained(
        pretrained_model_path,
        subfolder="unet",
        variant=unet_additional_kwargs['variant'],
        use_temporal=True if not is_image else False,
        temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'],
        augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'],
        n_frames=train_data.sample_n_frames if not is_image else 2,
        n_temp_heads=unet_additional_kwargs['n_temp_heads'],
        first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'],
        use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'],
        use_safetensors=True
    )

    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    unet.train()

    if use_ema:
        ema_unet = VideoLDMUNet3DConditionModel.from_pretrained(
            pretrained_model_path,
            subfolder="unet",
            variant=unet_additional_kwargs['variant'],
            use_temporal=True if not is_image else False,
            temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'],
            augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'],
            n_frames=train_data.sample_n_frames if not is_image else 2,
            n_temp_heads=unet_additional_kwargs['n_temp_heads'],
            first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'],
            use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'],
            use_safetensors=True
        )
        ema_unet = EMAModel(ema_unet.parameters(), decay=ema_decay, model_cls=VideoLDMUNet3DConditionModel, model_config=ema_unet.config)
    
    # Set unet trainable parameters
    train_all_parameters = False
    for trainable_module_name in trainable_modules:
        if trainable_module_name == 'all':
            unet.requires_grad_(True)
            train_all_parameters = True
            break

    if not train_all_parameters:
        unet.requires_grad_(False)
        for name, param in unet.named_parameters():
            for trainable_module_name in trainable_modules:
                if trainable_module_name in name:
                    param.requires_grad = True
                    break

    # Enable xformers
    if enable_xformers_memory_efficient_attention and int(torch.__version__.split(".")[0]) < 2:
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    def save_model_hook(models, weights, output_dir):
        if accelerator.is_main_process:
            if use_ema:
                ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

    def load_model_hook(models, input_dir):
        if use_ema:
            load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), VideoLDMUNet3DConditionModel)
            ema_unet.load_state_dict(load_model.state_dict())
            ema_unet.to(accelerator.device)
            del load_model

        for i in range(len(models)):
            # pop models so that they are not loaded again
            model = models.pop()

            # load diffusers style into model
            load_model = VideoLDMUNet3DConditionModel.from_pretrained(input_dir, subfolder="unet")
            model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable gradient checkpointing
    if gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if scale_lr:
        learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes)
    
    trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))
    optimizer = torch.optim.AdamW(
        trainable_params,
        lr=learning_rate,
        betas=(adam_beta1, adam_beta2),
        weight_decay=adam_weight_decay,
        eps=adam_epsilon,
    )

    logger.info(f"trainable params number: {len(trainable_params)}")
    logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")

    # Get the training dataset
    if train_data['dataset'] == "webvid":
        train_dataset = WebVid10M(**train_data, is_image=is_image)
    elif train_data['dataset'] == "pexels":
        train_dataset = Pexels(**train_data, is_image=is_image)
    elif train_data['dataset'] == "joint":
        train_dataset = JointDataset(**train_data, is_image=is_image)
    else:
        raise ValueError(f"Unknown dataset {train_data['dataset']}")

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        batch_size=train_batch_size,
        num_workers=num_workers,
        pin_memory=True,
    )

    # Get the training iteration
    if max_train_steps == -1:
        assert max_train_epoch != -1
        max_train_steps = max_train_epoch * len(train_dataloader)
        
    if checkpointing_steps == -1:
        assert checkpointing_epochs != -1
        checkpointing_steps = checkpointing_epochs * len(train_dataloader)

    # Scheduler
    lr_scheduler = get_scheduler(
        lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
        num_training_steps=max_train_steps * gradient_accumulation_steps,
    )

    # Validation pipeline
    validation_pipeline = ConditionalAnimationPipeline(
        unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
    )
    validation_pipeline.enable_vae_slicing()

    # Prepare everything with our `accelerator`.
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    if use_ema:
        ema_unet.to(accelerator.device)

    # Move text_encode and vae to gpu and cast to weight_dtype
    text_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
    # Afterwards we recalculate our number of training epochs
    num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)

    # Train!
    total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

    global_step = 0
    first_epoch = 0

    # Load pretrained unet weights
    if resume_from_checkpoint is not None:
        logger.info(f"Resuming from checkpoint: {resume_from_checkpoint}")
        accelerator.load_state(resume_from_checkpoint)
        global_step = int(resume_from_checkpoint.split("-")[-1])

        initial_global_step = global_step
        first_epoch = global_step // num_update_steps_per_epoch
        logger.info(f"global_step: {global_step}")
        logger.info(f"first_epoch: {first_epoch}")
    else:
        initial_global_step = 0

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(0, max_train_steps), initial=initial_global_step, desc="Steps", disable=not accelerator.is_main_process)

    for epoch in range(first_epoch, num_train_epochs):
        train_loss = 0.0
        train_grad_norm = 0.0
        data_loading_time = 0.0
        prepare_everything_time = 0.0
        network_forward_time = 0.0
        network_backward_time = 0.0

        t0 = time.time()
        for step, batch in enumerate(train_dataloader):
            t1 = time.time()
            if cfg_random_null_text_ratio > 0.0:
                batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']]
                
            # Data batch sanity check
            if accelerator.is_main_process and epoch == first_epoch and step == 0:
                pixel_values, texts = batch['pixel_values'].cpu(), batch['text']
                pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w")
                for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)):
                    pixel_value = pixel_value[None, ...]
                    save_videos_grid(pixel_value, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'no_text-{idx}'}.gif", rescale=True)
                    
            ### >>>> Training >>>> ###
            with accelerator.accumulate(unet):
                # Convert videos to latent space            
                pixel_values = batch["pixel_values"].to(weight_dtype)
                video_length = pixel_values.shape[1]
                pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
                latents = vae.encode(pixel_values).latent_dist
                latents = latents.sample()
                latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)

                latents = latents * vae.config.scaling_factor

                if unet_additional_kwargs["first_frame_condition_mode"] != "none":
                    # Get first frame latents
                    first_frame_latents = latents[:, :, 0:1, :, :]

                # Sample noise that we'll add to the latents
                if unet_additional_kwargs['noise_sampling_method'] == 'vanilla':
                    noise = torch.randn_like(latents)
                elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_mixed':
                    noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2
                    shared_noise = torch.randn_like(latents[:, :, 0:1, :, :]) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared))
                    ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared))
                    noise = shared_noise + ind_noise
                elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_progressive':
                    noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2
                    noise = torch.randn_like(latents)
                    ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared))
                    for i in range(1, noise.shape[2]):
                        noise[:, :, i, :, :] = noise[:, :, i - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_noise[:, :, i, :, :]
                else:
                    raise ValueError(f"Unknown noise sampling method {unet_additional_kwargs['noise_sampling_method']}")

                bsz = latents.shape[0]
            
                # Sample a random timestep for each video
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
            
                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                if cfg_random_null_img_ratio > 0.0:
                    for i in range(first_frame_latents.shape[0]):
                        if random.random() <= cfg_random_null_img_ratio:
                            first_frame_latents[i, :, :, :, :] = noisy_latents[i, :, 0:1, :, :]

                # Remove the first noisy latent from the latents if we're conditioning on the first frame
                if unet_additional_kwargs["first_frame_condition_mode"] != "none":
                    noisy_latents = noisy_latents[:, :, 1:, :, :]
            
                # Get the text embedding for conditioning
                prompt_ids = tokenizer(
                    batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
                ).input_ids.to(latents.device)
                encoder_hidden_states = text_encoder(prompt_ids)[0]
                
                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                timesteps = repeat(timesteps, "b -> b f", f=video_length)
                timesteps = rearrange(timesteps, "b f -> (b f)")

                frame_stride = None
                if unet_additional_kwargs["use_frame_stride_condition"]:
                    frame_stride = batch['stride'].to(latents.device)
                    frame_stride = frame_stride.long()
                    frame_stride = repeat(frame_stride, "b -> b f", f=video_length)
                    frame_stride = rearrange(frame_stride, "b f -> (b f)")

                t2 = time.time()

                # Predict the noise residual and compute loss
                if unet_additional_kwargs["first_frame_condition_mode"] != "none":
                    model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample
                    loss = F.mse_loss(model_pred.float(), target.float()[:, :, 1:, :, :], reduction="mean")
                else:
                    model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                
                t3 = time.time()
                
                avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
                train_loss += avg_loss.item() / gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    grad_norm = accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
                    avg_grad_norm = accelerator.gather(grad_norm.repeat(train_batch_size)).mean()
                    train_grad_norm += avg_grad_norm.item() / gradient_accumulation_steps

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

                t4 = time.time()

                data_loading_time += (t1 - t0) / gradient_accumulation_steps
                prepare_everything_time += (t2 - t1) / gradient_accumulation_steps
                network_forward_time += (t3 - t2) / gradient_accumulation_steps
                network_backward_time += (t4 - t3) / gradient_accumulation_steps

                t0 = time.time()
            
            ### <<<< Training <<<< ###
            
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if use_ema:
                    ema_unet.step(unet.parameters())
                progress_bar.update(1)
                global_step += 1

                # Wandb logging
                if accelerator.is_main_process and (not is_debug) and use_wandb:
                    wandb.log({"metrics/train_loss": train_loss}, step=global_step)
                    wandb.log({"metrics/train_grad_norm": train_grad_norm}, step=global_step)
                    
                    wandb.log({"profiling/train_data_loading_time": data_loading_time}, step=global_step)
                    wandb.log({"profiling/train_prepare_everything_time": prepare_everything_time}, step=global_step)
                    wandb.log({"profiling/train_network_forward_time": network_forward_time}, step=global_step)
                    wandb.log({"profiling/train_network_backward_time": network_backward_time}, step=global_step)
                    # accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0
                train_grad_norm = 0.0
                data_loading_time = 0.0
                prepare_everything_time = 0.0
                network_forward_time = 0.0
                network_backward_time = 0.0
                
                # Save checkpoint
                if global_step % checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path} (global_step: {global_step})")
                
                # Periodically validation
                if accelerator.is_main_process and global_step % validation_steps == 0:
                    if use_ema:
                        # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                        ema_unet.store(unet.parameters())
                        ema_unet.copy_to(unet.parameters())

                    samples = []
                    wandb_samples = []
                    
                    generator = torch.Generator(device=latents.device)
                    generator.manual_seed(seed)
                    
                    height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size
                    width  = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size

                    prompts = validation_data.prompts
                    
                    first_frame_paths = [None] * len(prompts)
                    if unet_additional_kwargs["first_frame_condition_mode"] != "none":
                        first_frame_paths = validation_data.path_to_first_frames

                    for idx, (prompt, first_frame_path) in enumerate(zip(prompts, first_frame_paths)):
                        sample = validation_pipeline(
                            prompt,
                            generator    = generator,
                            video_length = train_data.sample_n_frames if not is_image else 2,
                            height       = height,
                            width        = width,
                            first_frame_paths = first_frame_path,
                            noise_sampling_method = unet_additional_kwargs['noise_sampling_method'],
                            noise_alpha = float(unet_additional_kwargs['noise_alpha']),
                            **validation_data,
                        ).videos
                        save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif")
                        samples.append(sample)
                        
                        numpy_sample = (sample.squeeze(0).permute(1, 0, 2, 3) * 255).cpu().numpy().astype(np.uint8)
                        wandb_video = wandb.Video(numpy_sample, fps=8, caption=prompt)
                        wandb_samples.append(wandb_video)
                    
                    if (not is_debug) and use_wandb:
                        val_title = 'val_videos'
                        wandb.log({val_title: wandb_samples}, step=global_step)
                    
                    samples = torch.concat(samples)
                    save_path = f"{output_dir}/samples/sample-{global_step}.gif"
                    save_videos_grid(samples, save_path)

                    logger.info(f"Saved samples to {save_path}")

                    if use_ema:
                        # Switch back to the original UNet parameters.
                        ema_unet.restore(unet.parameters())
                
            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            
            if accelerator.is_main_process and (not is_debug) and use_wandb:
                wandb.log({"metrics/train_lr": lr_scheduler.get_last_lr()[0]}, step=global_step)
            
            if global_step >= max_train_steps:
                break
            
    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        pipeline = ConditionalAnimationPipeline(
            text_encoder=text_encoder,
            vae=vae,
            unet=unet,
            tokenizer=tokenizer,
            scheduler=noise_scheduler,
        )
        pipeline.save_pretrained(f"{output_dir}/final_checkpoint")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config",   type=str, required=True)
    parser.add_argument("--name", "-n", type=str, default="")
    parser.add_argument("--wandb",    action="store_true")
    parser.add_argument("optional_args", nargs='*', default=[])
    args = parser.parse_args()

    name   = args.name + "_" + Path(args.config).stem
    config = OmegaConf.load(args.config)

    if args.optional_args:
        modified_config = OmegaConf.from_dotlist(args.optional_args)
        config = OmegaConf.merge(config, modified_config)

    main(name=name, use_wandb=args.wandb, **config)