ConsistI2V / configs /inference /inference_autoregress.yaml
wren93's picture
add files
ef16dc7
raw
history blame
1.23 kB
output_dir: "samples/inference"
output_name: "long_video"
pretrained_model_path: "TIGER-Lab/ConsistI2V"
unet_path: null
unet_ckpt_prefix: "module."
pipeline_pretrained_path: null
sampling_kwargs:
height: 256
width: 256
n_frames: 16
steps: 50
ddim_eta: 0.0
guidance_scale_txt: 7.5
guidance_scale_img: 1.0
guidance_rescale: 0.0
num_videos_per_prompt: 1
frame_stride: 3
autoregress_steps: 3
unet_additional_kwargs:
variant: null
n_temp_heads: 8
augment_temporal_attention: true
temp_pos_embedding: "rotary" # "rotary" or "sinusoidal"
first_frame_condition_mode: "concat"
use_frame_stride_condition: true
noise_sampling_method: "pyoco_mixed" # "vanilla" or "pyoco_mixed" or "pyoco_progressive"
noise_alpha: 1.0
noise_scheduler_kwargs:
beta_start: 0.00085
beta_end: 0.012
beta_schedule: "linear"
steps_offset: 1
clip_sample: false
rescale_betas_zero_snr: false # true if using zero terminal snr
timestep_spacing: "leading" # "trailing" if using zero terminal snr
prediction_type: "epsilon" # "v_prediction" if using zero terminal snr
frameinit_kwargs:
enable: true
noise_level: 850
filter_params:
method: 'gaussian'
d_s: 0.25
d_t: 0.25