Spaces:
Running
on
Zero
Running
on
Zero
from importlib import import_module | |
from typing import Callable, Optional, Union | |
import math | |
from einops import rearrange, repeat | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.lora import LoRACompatibleLinear, LoRALinearLayer | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttnAddedKVProcessor, | |
AttnAddedKVProcessor2_0, | |
AttnProcessor, | |
AttnProcessor2_0, | |
SpatialNorm, | |
LORA_ATTENTION_PROCESSORS, | |
CustomDiffusionAttnProcessor, | |
CustomDiffusionXFormersAttnProcessor, | |
SlicedAttnAddedKVProcessor, | |
XFormersAttnAddedKVProcessor, | |
LoRAAttnAddedKVProcessor, | |
XFormersAttnProcessor, | |
LoRAXFormersAttnProcessor, | |
LoRAAttnProcessor, | |
LoRAAttnProcessor2_0, | |
SlicedAttnProcessor, | |
AttentionProcessor | |
) | |
from .rotary_embedding import RotaryEmbedding | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class ConditionalAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
cross_attention_norm_num_groups: int = 32, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
spatial_norm_dim: Optional[int] = None, | |
out_bias: bool = True, | |
scale_qk: bool = True, | |
only_cross_attention: bool = False, | |
eps: float = 1e-5, | |
rescale_output_factor: float = 1.0, | |
residual_connection: bool = False, | |
_from_deprecated_attn_block=False, | |
processor: Optional["AttnProcessor"] = None, | |
): | |
super().__init__() | |
self.inner_dim = dim_head * heads | |
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.rescale_output_factor = rescale_output_factor | |
self.residual_connection = residual_connection | |
self.dropout = dropout | |
# we make use of this private variable to know whether this class is loaded | |
# with an deprecated state dict so that we can convert it on the fly | |
self._from_deprecated_attn_block = _from_deprecated_attn_block | |
self.scale_qk = scale_qk | |
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
self.only_cross_attention = only_cross_attention | |
if self.added_kv_proj_dim is None and self.only_cross_attention: | |
raise ValueError( | |
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
) | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
else: | |
self.group_norm = None | |
if spatial_norm_dim is not None: | |
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
else: | |
self.spatial_norm = None | |
if cross_attention_norm is None: | |
self.norm_cross = None | |
elif cross_attention_norm == "layer_norm": | |
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
elif cross_attention_norm == "group_norm": | |
if self.added_kv_proj_dim is not None: | |
# The given `encoder_hidden_states` are initially of shape | |
# (batch_size, seq_len, added_kv_proj_dim) before being projected | |
# to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
# before the projection, so we need to use `added_kv_proj_dim` as | |
# the number of channels for the group norm. | |
norm_cross_num_channels = added_kv_proj_dim | |
else: | |
norm_cross_num_channels = self.cross_attention_dim | |
self.norm_cross = nn.GroupNorm( | |
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
) | |
else: | |
raise ValueError( | |
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
) | |
self.to_q = LoRACompatibleLinear(query_dim, self.inner_dim, bias=bias) | |
if not self.only_cross_attention: | |
# only relevant for the `AddedKVProcessor` classes | |
self.to_k = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias) | |
self.to_v = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias) | |
else: | |
self.to_k = None | |
self.to_v = None | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim) | |
self.add_v_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(LoRACompatibleLinear(self.inner_dim, query_dim, bias=out_bias)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
if processor is None: | |
processor = ( | |
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_use_memory_efficient_attention_xformers( | |
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
): | |
is_lora = hasattr(self, "processor") and isinstance( | |
self.processor, | |
LORA_ATTENTION_PROCESSORS, | |
) | |
is_custom_diffusion = hasattr(self, "processor") and isinstance( | |
self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor) | |
) | |
is_added_kv_processor = hasattr(self, "processor") and isinstance( | |
self.processor, | |
( | |
AttnAddedKVProcessor, | |
AttnAddedKVProcessor2_0, | |
SlicedAttnAddedKVProcessor, | |
XFormersAttnAddedKVProcessor, | |
LoRAAttnAddedKVProcessor, | |
), | |
) | |
if use_memory_efficient_attention_xformers: | |
if is_added_kv_processor and (is_lora or is_custom_diffusion): | |
raise NotImplementedError( | |
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" | |
) | |
if not is_xformers_available(): | |
raise ModuleNotFoundError( | |
( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers" | |
), | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" | |
" only available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
if is_lora: | |
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers | |
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0? | |
processor = LoRAXFormersAttnProcessor( | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
rank=self.processor.rank, | |
attention_op=attention_op, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
processor.to(self.processor.to_q_lora.up.weight.device) | |
elif is_custom_diffusion: | |
processor = CustomDiffusionXFormersAttnProcessor( | |
train_kv=self.processor.train_kv, | |
train_q_out=self.processor.train_q_out, | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
attention_op=attention_op, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
if hasattr(self.processor, "to_k_custom_diffusion"): | |
processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
elif is_added_kv_processor: | |
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP | |
# which uses this type of cross attention ONLY because the attention mask of format | |
# [0, ..., -10.000, ..., 0, ...,] is not supported | |
# throw warning | |
logger.info( | |
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." | |
) | |
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) | |
else: | |
processor = XFormersAttnProcessor(attention_op=attention_op) | |
else: | |
if is_lora: | |
attn_processor_class = ( | |
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
) | |
processor = attn_processor_class( | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
rank=self.processor.rank, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
processor.to(self.processor.to_q_lora.up.weight.device) | |
elif is_custom_diffusion: | |
processor = CustomDiffusionAttnProcessor( | |
train_kv=self.processor.train_kv, | |
train_q_out=self.processor.train_q_out, | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
if hasattr(self.processor, "to_k_custom_diffusion"): | |
processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
else: | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
processor = ( | |
AttnProcessor2_0() | |
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
if slice_size is not None and self.added_kv_proj_dim is not None: | |
processor = SlicedAttnAddedKVProcessor(slice_size) | |
elif slice_size is not None: | |
processor = SlicedAttnProcessor(slice_size) | |
elif self.added_kv_proj_dim is not None: | |
processor = AttnAddedKVProcessor() | |
else: | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
processor = ( | |
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_processor(self, processor: "AttnProcessor"): | |
if ( | |
hasattr(self, "processor") | |
and not isinstance(processor, LORA_ATTENTION_PROCESSORS) | |
and self.to_q.lora_layer is not None | |
): | |
deprecate( | |
"set_processor to offload LoRA", | |
"0.26.0", | |
"In detail, removing LoRA layers via calling `set_processor` or `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.", | |
) | |
# (Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete | |
# We need to remove all LoRA layers | |
for module in self.modules(): | |
if hasattr(module, "set_lora_layer"): | |
module.set_lora_layer(None) | |
# if current processor is in `self._modules` and if passed `processor` is not, we need to | |
# pop `processor` from `self._modules` | |
if ( | |
hasattr(self, "processor") | |
and isinstance(self.processor, torch.nn.Module) | |
and not isinstance(processor, torch.nn.Module) | |
): | |
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
self._modules.pop("processor") | |
self.processor = processor | |
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": | |
if not return_deprecated_lora: | |
return self.processor | |
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
# serialization format for LoRA Attention Processors. It should be deleted once the integration | |
# with PEFT is completed. | |
is_lora_activated = { | |
name: module.lora_layer is not None | |
for name, module in self.named_modules() | |
if hasattr(module, "lora_layer") | |
} | |
# 1. if no layer has a LoRA activated we can return the processor as usual | |
if not any(is_lora_activated.values()): | |
return self.processor | |
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
is_lora_activated.pop("add_k_proj", None) | |
is_lora_activated.pop("add_v_proj", None) | |
# 2. else it is not posssible that only some layers have LoRA activated | |
if not all(is_lora_activated.values()): | |
raise ValueError( | |
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
) | |
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
non_lora_processor_cls_name = self.processor.__class__.__name__ | |
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
hidden_size = self.inner_dim | |
# now create a LoRA attention processor from the LoRA layers | |
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: | |
kwargs = { | |
"cross_attention_dim": self.cross_attention_dim, | |
"rank": self.to_q.lora_layer.rank, | |
"network_alpha": self.to_q.lora_layer.network_alpha, | |
"q_rank": self.to_q.lora_layer.rank, | |
"q_hidden_size": self.to_q.lora_layer.out_features, | |
"k_rank": self.to_k.lora_layer.rank, | |
"k_hidden_size": self.to_k.lora_layer.out_features, | |
"v_rank": self.to_v.lora_layer.rank, | |
"v_hidden_size": self.to_v.lora_layer.out_features, | |
"out_rank": self.to_out[0].lora_layer.rank, | |
"out_hidden_size": self.to_out[0].lora_layer.out_features, | |
} | |
if hasattr(self.processor, "attention_op"): | |
kwargs["attention_op"] = self.prcoessor.attention_op | |
lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
lora_processor = lora_processor_cls( | |
hidden_size, | |
cross_attention_dim=self.add_k_proj.weight.shape[0], | |
rank=self.to_q.lora_layer.rank, | |
network_alpha=self.to_q.lora_layer.network_alpha, | |
) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
# only save if used | |
if self.add_k_proj.lora_layer is not None: | |
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) | |
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) | |
else: | |
lora_processor.add_k_proj_lora = None | |
lora_processor.add_v_proj_lora = None | |
else: | |
raise ValueError(f"{lora_processor_cls} does not exist.") | |
return lora_processor | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): | |
# The `Attention` class can call different attention processors / attention functions | |
# here we simply pass along all tensors to the selected processor class | |
# For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
return self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
def batch_to_head_dim(self, tensor): | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def head_to_batch_dim(self, tensor, out_dim=3): | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3) | |
if out_dim == 3: | |
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def get_attention_scores(self, query, key, attention_mask=None): | |
dtype = query.dtype | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
if attention_mask is None: | |
baddbmm_input = torch.empty( | |
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
) | |
beta = 0 | |
else: | |
baddbmm_input = attention_mask | |
beta = 1 | |
attention_scores = torch.baddbmm( | |
baddbmm_input, | |
query, | |
key.transpose(-1, -2), | |
beta=beta, | |
alpha=self.scale, | |
) | |
del baddbmm_input | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
del attention_scores | |
attention_probs = attention_probs.to(dtype) | |
return attention_probs | |
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3): | |
if batch_size is None: | |
deprecate( | |
"batch_size=None", | |
"0.22.0", | |
( | |
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect" | |
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to" | |
" `prepare_attention_mask` when preparing the attention_mask." | |
), | |
) | |
batch_size = 1 | |
head_size = self.heads | |
if attention_mask is None: | |
return attention_mask | |
current_length: int = attention_mask.shape[-1] | |
if current_length != target_length: | |
if attention_mask.device.type == "mps": | |
# HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
# Instead, we can manually construct the padding tensor. | |
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat([attention_mask, padding], dim=2) | |
else: | |
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
# we want to instead pad by (0, remaining_length), where remaining_length is: | |
# remaining_length: int = target_length - current_length | |
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
if out_dim == 3: | |
if attention_mask.shape[0] < batch_size * head_size: | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
elif out_dim == 4: | |
attention_mask = attention_mask.unsqueeze(1) | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
return attention_mask | |
def norm_encoder_hidden_states(self, encoder_hidden_states): | |
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
if isinstance(self.norm_cross, nn.LayerNorm): | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
elif isinstance(self.norm_cross, nn.GroupNorm): | |
# Group norm norms along the channels dimension and expects | |
# input to be in the shape of (N, C, *). In this case, we want | |
# to norm along the hidden dimension, so we need to move | |
# (batch_size, sequence_length, hidden_size) -> | |
# (batch_size, hidden_size, sequence_length) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
else: | |
assert False | |
return encoder_hidden_states | |
class TemporalConditionalAttention(Attention): | |
def __init__(self, n_frames=8, rotary_emb=False, *args, **kwargs): | |
super().__init__(processor=RotaryEmbAttnProcessor2_0() if rotary_emb else None, *args, **kwargs) | |
if not rotary_emb: | |
self.pos_enc = PositionalEncoding(self.inner_dim) | |
else: | |
rotary_bias = RelativePositionBias(heads=kwargs['heads'], max_distance=32) | |
self.rotary_bias = rotary_bias | |
self.rotary_emb = RotaryEmbedding(self.inner_dim // 2) | |
self.use_rotary_emb = rotary_emb | |
self.n_frames = n_frames | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
adjacent_slices=None, | |
**cross_attention_kwargs): | |
key_pos_idx = None | |
bt, hw, c = hidden_states.shape | |
hidden_states = rearrange(hidden_states, '(b t) hw c -> b hw t c', t=self.n_frames) | |
if not self.use_rotary_emb: | |
pos_embed = self.pos_enc(self.n_frames) | |
hidden_states = hidden_states + pos_embed | |
hidden_states = rearrange(hidden_states, 'b hw t c -> (b hw) t c') | |
if encoder_hidden_states is not None: | |
assert adjacent_slices is None | |
encoder_hidden_states = encoder_hidden_states[::self.n_frames] | |
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b hw) n c', hw=hw) | |
if adjacent_slices is not None: | |
assert encoder_hidden_states is None | |
adjacent_slices = rearrange(adjacent_slices, 'b c h w n -> b (h w) n c') | |
if not self.use_rotary_emb: | |
first_frame_pos_embed = pos_embed[0:1, :] | |
adjacent_slices = adjacent_slices + first_frame_pos_embed | |
else: | |
pos_idx = torch.arange(self.n_frames, device=hidden_states.device, dtype=hidden_states.dtype) | |
first_frame_pos_pad = torch.zeros(adjacent_slices.shape[2], device=hidden_states.device, dtype=hidden_states.dtype) | |
key_pos_idx = torch.cat([pos_idx, first_frame_pos_pad], dim=0) | |
adjacent_slices = rearrange(adjacent_slices, 'b hw n c -> (b hw) n c') | |
encoder_hidden_states = torch.cat([hidden_states, adjacent_slices], dim=1) | |
if not self.use_rotary_emb: | |
out = self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
out = self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
key_pos_idx=key_pos_idx, | |
**cross_attention_kwargs, | |
) | |
out = rearrange(out, '(b hw) t c -> (b t) hw c', hw=hw) | |
return out | |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers, attention_op=None): | |
if use_memory_efficient_attention_xformers: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
processor = XFormersAttnProcessor(attention_op=attention_op) | |
else: | |
processor = ( | |
AttnProcessor2_0() | |
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
else AttnProcessor() | |
) | |
self.set_processor(processor) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, dim, max_pos=512): | |
super().__init__() | |
pos = torch.arange(max_pos) | |
freq = torch.arange(dim//2) / dim | |
freq = (freq * torch.tensor(10000).log()).exp() | |
x = rearrange(pos, 'L -> L 1') / freq | |
x = rearrange(x, 'L d -> L d 1') | |
pe = torch.cat((x.sin(), x.cos()), dim=-1) | |
self.pe = rearrange(pe, 'L d sc -> L (d sc)') | |
self.dummy = nn.Parameter(torch.rand(1)) | |
def forward(self, length): | |
enc = self.pe[:length] | |
enc = enc.to(self.dummy.device, self.dummy.dtype) | |
return enc | |
# code taken from https://github.com/Vchitect/LaVie/blob/main/base/models/temporal_attention.py | |
class RelativePositionBias(nn.Module): | |
def __init__( | |
self, | |
heads=8, | |
num_buckets=32, | |
max_distance=128, | |
): | |
super().__init__() | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): | |
ret = 0 | |
n = -relative_position | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, qlen, klen, device, dtype): | |
q_pos = torch.arange(qlen, dtype = torch.long, device = device) | |
k_pos = torch.arange(klen, dtype = torch.long, device = device) | |
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') | |
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) | |
values = values.to(device, dtype) | |
return rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames | |
class RotaryEmbAttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
Add rotary embedding support | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale: float = 1.0, | |
key_pos_idx: Optional[torch.Tensor] = None, | |
): | |
assert attention_mask is None | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
# if attention_mask is not None: | |
# attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# # scaled_dot_product_attention expects attention_mask shape to be | |
# # (batch, heads, source_length, target_length) | |
# attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states, scale=scale) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
qlen = hidden_states.shape[1] | |
klen = encoder_hidden_states.shape[1] | |
# currently only add bias for self attention. Relative distance doesn't make sense for cross attention. | |
# if qlen == klen: | |
# time_rel_pos_bias = attn.rotary_bias(qlen, klen, device=hidden_states.device, dtype=hidden_states.dtype) | |
# attention_mask = repeat(time_rel_pos_bias, "h d1 d2 -> b h d1 d2", b=batch_size) | |
key = attn.to_k(encoder_hidden_states, scale=scale) | |
value = attn.to_v(encoder_hidden_states, scale=scale) | |
query = attn.rotary_emb.rotate_queries_or_keys(query) | |
if qlen == klen: | |
key = attn.rotary_emb.rotate_queries_or_keys(key) | |
elif key_pos_idx is not None: | |
key = attn.rotary_emb.rotate_queries_or_keys(key, seq_pos=key_pos_idx) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, scale=scale) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states |