Spaces:
Running
on
Zero
Running
on
Zero
# Modified from https://github.com/huggingface/diffusers/blob/v0.21.0/src/diffusers/models/transformer_2d.py | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from einops import rearrange, repeat | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.embeddings import ImagePositionalEmbeddings | |
from diffusers.utils import BaseOutput, deprecate | |
from diffusers.models.attention import AdaLayerNorm, AdaLayerNormZero, FeedForward, GatedSelfAttentionDense | |
from diffusers.models.embeddings import PatchEmbed | |
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.transformer_2d import Transformer2DModelOutput | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.lora import LoRACompatibleLinear | |
from .videoldm_attention import ConditionalAttention, TemporalConditionalAttention | |
class Transformer2DConditionModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "layer_norm", | |
norm_elementwise_affine: bool = True, | |
attention_type: str = "default", | |
# additional | |
n_frames: int = 8, | |
is_temporal: bool = False, | |
augment_temporal_attention: bool = False, | |
rotary_emb=False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
# Define whether input is continuous or discrete depending on configuration | |
self.is_input_continuous = (in_channels is not None) and (patch_size is None) | |
self.is_input_vectorized = num_vector_embeds is not None | |
self.is_input_patches = in_channels is not None and patch_size is not None | |
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: | |
deprecation_message = ( | |
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" | |
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config." | |
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" | |
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" | |
" would be very nice if you could open a Pull request for the `transformer/config.json` file" | |
) | |
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) | |
norm_type = "ada_norm" | |
if self.is_input_continuous and self.is_input_vectorized: | |
raise ValueError( | |
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" | |
" sure that either `in_channels` or `num_vector_embeds` is None." | |
) | |
elif self.is_input_vectorized and self.is_input_patches: | |
raise ValueError( | |
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" | |
" sure that either `num_vector_embeds` or `num_patches` is None." | |
) | |
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: | |
raise ValueError( | |
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" | |
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." | |
) | |
# 2. Define input layers | |
if self.is_input_continuous: | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
if use_linear_projection: | |
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim) | |
else: | |
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" | |
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" | |
self.height = sample_size | |
self.width = sample_size | |
self.num_vector_embeds = num_vector_embeds | |
self.num_latent_pixels = self.height * self.width | |
self.latent_image_embedding = ImagePositionalEmbeddings( | |
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width | |
) | |
elif self.is_input_patches: | |
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size" | |
self.height = sample_size | |
self.width = sample_size | |
self.patch_size = patch_size | |
self.pos_embed = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicConditionalTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
attention_type=attention_type, | |
# additional | |
n_frames=n_frames, | |
is_temporal=is_temporal, | |
augment_temporal_attention=augment_temporal_attention, | |
rotary_emb=rotary_emb, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
self.out_channels = in_channels if out_channels is None else out_channels | |
if self.is_input_continuous: | |
# TODO: should use out_channels for continuous projections | |
if use_linear_projection: | |
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels) | |
else: | |
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
self.norm_out = nn.LayerNorm(inner_dim) | |
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) | |
elif self.is_input_patches: | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
self.alpha = None | |
if is_temporal: | |
self.alpha = nn.Parameter(torch.ones(1)) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
condition_on_first_frame: bool = False, | |
): | |
input_states = hidden_states | |
input_height, input_width = hidden_states.shape[-2:] | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None and attention_mask.ndim == 2: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 1. Input | |
if self.is_input_continuous: | |
batch, _, height, width = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states, lora_scale) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
hidden_states = self.proj_in(hidden_states, scale=lora_scale) | |
elif self.is_input_vectorized: | |
hidden_states = self.latent_image_embedding(hidden_states) | |
elif self.is_input_patches: | |
hidden_states = self.pos_embed(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
if self.training and self.gradient_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
block, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
timestep, | |
cross_attention_kwargs, | |
class_labels, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = block( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
# additional | |
condition_on_first_frame=condition_on_first_frame, | |
input_height=input_height, | |
input_width=input_width, | |
) | |
# 3. Output | |
if self.is_input_continuous: | |
if not self.use_linear_projection: | |
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
hidden_states = self.proj_out(hidden_states, scale=lora_scale) | |
else: | |
hidden_states = self.proj_out(hidden_states, scale=lora_scale) | |
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
output = hidden_states + residual | |
elif self.is_input_vectorized: | |
hidden_states = self.norm_out(hidden_states) | |
logits = self.out(hidden_states) | |
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels) | |
logits = logits.permute(0, 2, 1) | |
# log(p(x_0)) | |
output = F.log_softmax(logits.double(), dim=1).float() | |
elif self.is_input_patches: | |
# TODO: cleanup! | |
conditioning = self.transformer_blocks[0].norm1.emb( | |
timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
hidden_states = self.proj_out_2(hidden_states) | |
# unpatchify | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
hidden_states = hidden_states.reshape( | |
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
) | |
if self.alpha is not None: | |
with torch.no_grad(): | |
self.alpha.clamp_(0, 1) | |
output = self.alpha * input_states + (1 - self.alpha) * output | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
class BasicConditionalTransformerBlock(nn.Module): | |
""" transformer block with first frame conditioning """ | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
# additional | |
n_frames: int = 8, | |
is_temporal: bool = False, | |
augment_temporal_attention: bool = False, | |
rotary_emb=False, | |
): | |
super().__init__() | |
self.n_frames = n_frames | |
self.only_cross_attention = only_cross_attention | |
self.augment_temporal_attention = augment_temporal_attention | |
self.is_temporal = is_temporal | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
if not is_temporal: | |
self.attn1 = ConditionalAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn1 = TemporalConditionalAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
# additional | |
n_frames=n_frames, | |
rotary_emb=rotary_emb, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
if not is_temporal: | |
self.attn2 = ConditionalAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = TemporalConditionalAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
# additional | |
n_frames=n_frames, | |
rotary_emb=rotary_emb, | |
) | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
condition_on_first_frame: bool = False, | |
input_height: Optional[int] = None, | |
input_width: Optional[int] = None, | |
): | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
if condition_on_first_frame: | |
first_frame_hidden_states = rearrange(norm_hidden_states, '(b f) d h -> b f d h', f=self.n_frames)[:, 0, :, :] | |
first_frame_hidden_states = repeat(first_frame_hidden_states, 'b d h -> b f d h', f=self.n_frames) | |
first_frame_hidden_states = rearrange(first_frame_hidden_states, 'b f d h -> (b f) d h') | |
first_frame_concat_hidden_states = torch.cat((norm_hidden_states, first_frame_hidden_states), dim=1) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else first_frame_concat_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
elif self.is_temporal and self.augment_temporal_attention: | |
first_frame_hidden_states = rearrange(norm_hidden_states, '(b f) d h -> b f d h', f=self.n_frames)[:, 0, :, :] | |
first_frame_hidden_states = rearrange(first_frame_hidden_states, 'b (h w) c -> b h w c', h=input_height, w=input_width) | |
first_frame_hidden_states = first_frame_hidden_states.permute(0, 3, 1, 2) | |
padded_first_frame = torch.nn.functional.pad(first_frame_hidden_states, (1, 1, 1, 1), "replicate") | |
first_frame_windows = padded_first_frame.unfold(2, 3, 1).unfold(3, 3, 1) | |
mask = torch.tensor([[1, 1, 1], [1, 0, 1], [1, 1, 1]], dtype=torch.bool) | |
adjacent_slices = first_frame_windows[:, :, :, :, mask] | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
adjacent_slices=adjacent_slices, | |
**cross_attention_kwargs, | |
) | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 2.5 ends | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states |