Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py | |
import inspect | |
from typing import Callable, List, Optional, Union | |
from dataclasses import dataclass | |
import math | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
from torchvision import transforms as T | |
from torchvision.transforms import functional as F | |
from PIL import Image | |
from diffusers.utils import is_accelerate_available | |
from packaging import version | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.models import AutoencoderKL | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.utils import deprecate, logging, BaseOutput | |
from einops import rearrange, repeat | |
from ..models.videoldm_unet import VideoLDMUNet3DConditionModel | |
from ..utils.frameinit_utils import get_freq_filter, freq_mix_3d | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# copied from https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L59C1-L70C21 | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
def pan_right(image, num_frames=16, crop_width=256): | |
frames = [] | |
height, width = image.shape[-2:] | |
for i in range(num_frames): | |
# Calculate the start position of the crop | |
start_x = int((width - crop_width) * (i / num_frames)) | |
crop = F.crop(image, 0, start_x, height, crop_width) | |
frames.append(crop.unsqueeze(0)) | |
return torch.cat(frames, dim=0) | |
def pan_left(image, num_frames=16, crop_width=256): | |
frames = [] | |
height, width = image.shape[-2:] | |
for i in range(num_frames): | |
# Start position moves from right to left | |
start_x = int((width - crop_width) * (1 - (i / num_frames))) | |
crop = F.crop(image, 0, start_x, height, crop_width) | |
frames.append(crop.unsqueeze(0)) | |
return torch.cat(frames, dim=0) | |
def zoom_in(image, num_frames=16, crop_width=256, ratio=1.5): | |
frames = [] | |
height, width = image.shape[-2:] | |
max_crop_size = min(width, height) | |
for i in range(num_frames): | |
# Calculate the size of the crop | |
crop_size = max_crop_size - int((max_crop_size - max_crop_size // ratio) * (i / num_frames)) | |
start_x = (width - crop_size) // 2 | |
start_y = (height - crop_size) // 2 | |
crop = F.crop(image, start_y, start_x, crop_size, crop_size) | |
resized_crop = F.resize(crop, (crop_width, crop_width), antialias=None) # Resize back to original size | |
frames.append(resized_crop.unsqueeze(0)) | |
return torch.cat(frames, dim=0) | |
def zoom_out(image, num_frames=16, crop_width=256, ratio=1.5): | |
frames = [] | |
height, width = image.shape[-2:] | |
min_crop_size = min(width, height) // ratio # Starting from a quarter of the size | |
for i in range(num_frames): | |
# Calculate the size of the crop | |
crop_size = min_crop_size + int((min(width, height) - min_crop_size) * (i / num_frames)) | |
start_x = (width - crop_size) // 2 | |
start_y = (height - crop_size) // 2 | |
crop = F.crop(image, start_y, start_x, crop_size, crop_size) | |
resized_crop = F.resize(crop, (crop_width, crop_width), antialias=None) # Resize back to original size | |
frames.append(resized_crop.unsqueeze(0)) | |
return torch.cat(frames, dim=0) | |
class AnimationPipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
class ConditionalAnimationPipeline(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: VideoLDMUNet3DConditionModel, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
) | |
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["clip_sample"] = False | |
scheduler._internal_dict = FrozenDict(new_config) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.freq_filter = None | |
def init_filter(self, video_length, height, width, filter_params): | |
# initialize frequency filter for noise reinitialization | |
batch_size = 1 | |
num_channels_latents = self.unet.config.in_channels | |
filter_shape = [ | |
batch_size, | |
num_channels_latents, | |
video_length, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor | |
] | |
# self.freq_filter = get_freq_filter(filter_shape, device=self._execution_device, params=filter_params) | |
self.freq_filter = get_freq_filter( | |
filter_shape, | |
device=self._execution_device, | |
filter_type=filter_params.method, | |
n=filter_params.n if filter_params.method=="butterworth" else None, | |
d_s=filter_params.d_s, | |
d_t=filter_params.d_t | |
) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance is not None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_classifier_free_guidance == "text": | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
elif do_classifier_free_guidance == "both": | |
text_embeddings = torch.cat([uncond_embeddings, uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents, first_frames=None): | |
video_length = latents.shape[2] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
# video = self.vae.decode(latents).sample | |
video = [] | |
for frame_idx in tqdm(range(latents.shape[0]), **self._progress_bar_config): | |
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
if first_frames is not None: | |
first_frames = first_frames.unsqueeze(2) | |
video = torch.cat([first_frames, video], dim=2) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps, first_frame_paths=None): | |
if not isinstance(prompt, str) and not isinstance(prompt, list): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if first_frame_paths is not None and (not isinstance(prompt, str) and not isinstance(first_frame_paths, list)): | |
raise ValueError(f"`first_frame_paths` has to be of type `str` or `list` but is {type(first_frame_paths)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None, noise_sampling_method="vanilla", noise_alpha=1.0): | |
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
# shape = shape | |
shape = (1,) + shape[1:] | |
if noise_sampling_method == "vanilla": | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
elif noise_sampling_method == "pyoco_mixed": | |
base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
latents = [] | |
noise_alpha_squared = noise_alpha ** 2 | |
for i in range(batch_size): | |
base_latent = torch.randn(base_shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) | |
ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared)) | |
latents.append(base_latent + ind_latent) | |
elif noise_sampling_method == "pyoco_progressive": | |
latents = [] | |
noise_alpha_squared = noise_alpha ** 2 | |
for i in range(batch_size): | |
latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
ind_latent = torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared)) | |
for j in range(1, video_length): | |
latent[:, :, j, :, :] = latent[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latent[:, :, j, :, :] | |
latents.append(latent) | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
if noise_sampling_method == "vanilla": | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
elif noise_sampling_method == "pyoco_mixed": | |
noise_alpha_squared = noise_alpha ** 2 | |
base_shape = (batch_size, num_channels_latents, 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
base_latents = torch.randn(base_shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) | |
ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared)) | |
latents = base_latents + ind_latents | |
elif noise_sampling_method == "pyoco_progressive": | |
noise_alpha_squared = noise_alpha ** 2 | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) | |
ind_latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) * math.sqrt(1 / (1 + noise_alpha_squared)) | |
for j in range(1, video_length): | |
latents[:, :, j, :, :] = latents[:, :, j - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_latents[:, :, j, :, :] | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
video_length: Optional[int], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale_txt: float = 7.5, | |
guidance_scale_img: float = 2.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
# additional | |
first_frame_paths: Optional[Union[str, List[str]]] = None, | |
first_frames: Optional[torch.FloatTensor] = None, | |
noise_sampling_method: str = "vanilla", | |
noise_alpha: float = 1.0, | |
guidance_rescale: float = 0.0, | |
frame_stride: Optional[int] = None, | |
use_frameinit: bool = False, | |
frameinit_noise_level: int = 999, | |
camera_motion: str = None, | |
**kwargs, | |
): | |
if first_frame_paths is not None and first_frames is not None: | |
raise ValueError("Only one of `first_frame_paths` and `first_frames` can be passed.") | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps, first_frame_paths) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
first_frame_input = first_frame_paths if first_frame_paths is not None else first_frames | |
if first_frame_input is not None: | |
assert len(prompt) == len(first_frame_input), "prompt and first_frame_paths should have the same length" | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = None | |
# two guidance mode: text and text+image | |
if guidance_scale_txt > 1.0: | |
do_classifier_free_guidance = "text" | |
if guidance_scale_img > 1.0: | |
do_classifier_free_guidance = "both" | |
# Encode input prompt | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
# Encode input first frame | |
first_frame_latents = None | |
if first_frame_paths is not None: | |
first_frame_paths = first_frame_paths if isinstance(first_frame_paths, list) else [first_frame_paths] * batch_size | |
if camera_motion is None: | |
img_transform = T.Compose([ | |
T.ToTensor(), | |
T.Resize(height, antialias=None), | |
T.CenterCrop((height, width)), | |
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
elif camera_motion == "pan_left" or camera_motion == "pan_right": | |
img_transform = T.Compose([ | |
T.ToTensor(), | |
T.Resize(height, antialias=None), | |
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
elif camera_motion == "zoom_out" or camera_motion == "zoom_in": | |
img_transform = T.Compose([ | |
T.ToTensor(), | |
T.Resize(height * 2, antialias=None), | |
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
first_frames = [] | |
for first_frame_path in first_frame_paths: | |
first_frame = Image.open(first_frame_path).convert('RGB') | |
first_frame = img_transform(first_frame) | |
if camera_motion is not None: | |
if camera_motion == "pan_left": | |
first_frame = pan_left(first_frame, num_frames=video_length, crop_width=width) | |
elif camera_motion == "pan_right": | |
first_frame = pan_right(first_frame, num_frames=video_length, crop_width=width) | |
elif camera_motion == "zoom_in": | |
first_frame = zoom_in(first_frame, num_frames=video_length, crop_width=width) | |
elif camera_motion == "zoom_out": | |
first_frame = zoom_out(first_frame, num_frames=video_length, crop_width=width) | |
else: | |
raise NotImplementedError(f"camera_motion: {camera_motion} is not implemented.") | |
first_frames.append(first_frame.unsqueeze(0)) | |
first_frames = torch.cat(first_frames, dim=0) | |
if first_frames is not None: | |
first_frames = first_frames.to(device, dtype=self.vae.dtype) | |
if camera_motion is not None: | |
first_frames = rearrange(first_frames, "b f c h w -> (b f) c h w") | |
first_frame_latents = self.vae.encode(first_frames).latent_dist | |
first_frame_latents = first_frame_latents.sample() | |
first_frame_latents = first_frame_latents * self.vae.config.scaling_factor # b, c, h, w | |
first_frame_static_vid = rearrange(first_frame_latents, "(b f) c h w -> b c f h w", f=video_length if camera_motion is not None else 1) | |
first_frame_latents = first_frame_static_vid[:, :, 0, :, :] | |
first_frame_latents = repeat(first_frame_latents, "b c h w -> (b n) c h w", n=num_videos_per_prompt) | |
first_frames = repeat(first_frames, "b c h w -> (b n) c h w", n=num_videos_per_prompt) | |
if use_frameinit and camera_motion is None: | |
first_frame_static_vid = repeat(first_frame_static_vid, "b c 1 h w -> b c t h w", t=video_length) | |
# self._progress_bar_config = {} | |
# vid = self.decode_latents(first_frame_static_vid) | |
# vid = torch.from_numpy(vid) | |
# from ..utils.util import save_videos_grid | |
# save_videos_grid(vid, "samples/debug/camera_motion/first_frame_static_vid.mp4", fps=8) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
video_length, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
noise_sampling_method, | |
noise_alpha, | |
) | |
latents_dtype = latents.dtype | |
if use_frameinit: | |
current_diffuse_timestep = frameinit_noise_level # diffuse to t noise level | |
diffuse_timesteps = torch.full((batch_size,),int(current_diffuse_timestep)) | |
diffuse_timesteps = diffuse_timesteps.long() | |
z_T = self.scheduler.add_noise( | |
original_samples=first_frame_static_vid.to(device), | |
noise=latents.to(device), | |
timesteps=diffuse_timesteps.to(device) | |
) | |
latents = freq_mix_3d(z_T.to(dtype=torch.float32), latents.to(dtype=torch.float32), LPF=self.freq_filter) | |
latents = latents.to(dtype=latents_dtype) | |
if first_frame_latents is not None: | |
first_frame_noisy_latent = latents[:, :, 0, :, :] | |
latents = latents[:, :, 1:, :, :] | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
if do_classifier_free_guidance is None: | |
latent_model_input = latents | |
elif do_classifier_free_guidance == "text": | |
latent_model_input = torch.cat([latents] * 2) | |
elif do_classifier_free_guidance == "both": | |
latent_model_input = torch.cat([latents] * 3) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if first_frame_latents is not None: | |
if do_classifier_free_guidance is None: | |
first_frame_latents_input = first_frame_latents | |
elif do_classifier_free_guidance == "text": | |
first_frame_latents_input = torch.cat([first_frame_latents] * 2) | |
elif do_classifier_free_guidance == "both": | |
first_frame_latents_input = torch.cat([first_frame_noisy_latent, first_frame_latents, first_frame_latents]) | |
first_frame_latents_input = first_frame_latents_input.unsqueeze(2) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, first_frame_latents=first_frame_latents_input, frame_stride=frame_stride).sample.to(dtype=latents_dtype) | |
else: | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype) | |
# perform guidance | |
if do_classifier_free_guidance: | |
if do_classifier_free_guidance == "text": | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale_txt * (noise_pred_text - noise_pred_uncond) | |
elif do_classifier_free_guidance == "both": | |
noise_pred_uncond, noise_pred_img, noise_pred_both = noise_pred.chunk(3) | |
noise_pred = noise_pred_uncond + guidance_scale_img * (noise_pred_img - noise_pred_uncond) + guidance_scale_txt * (noise_pred_both - noise_pred_img) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
# currently only support text guidance | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# Post-processing | |
latents = torch.cat([first_frame_latents.unsqueeze(2), latents], dim=2) | |
# video = self.decode_latents(latents, first_frames) | |
video = self.decode_latents(latents) | |
# Convert to tensor | |
if output_type == "tensor": | |
video = torch.from_numpy(video) | |
if not return_dict: | |
return video | |
return AnimationPipelineOutput(videos=video) | |