Spaces:
Running
Running
import gradio as gr | |
from utils import MEGABenchEvalDataLoader | |
import os | |
from constants import * | |
# Get the directory of the current script | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
# Construct paths to CSS files | |
base_css_file = os.path.join(current_dir, "static", "css", "style.css") | |
table_css_file = os.path.join(current_dir, "static", "css", "table.css") | |
# Read CSS files | |
with open(base_css_file, "r") as f: | |
base_css = f.read() | |
with open(table_css_file, "r") as f: | |
table_css = f.read() | |
# Initialize data loaders | |
default_loader = MEGABenchEvalDataLoader("./static/eval_results/Default") | |
si_loader = MEGABenchEvalDataLoader("./static/eval_results/SI") | |
with gr.Blocks() as block: | |
# Add a style element that we'll update | |
css_style = gr.HTML( | |
f"<style>{base_css}\n{table_css}</style>", | |
visible=False | |
) | |
gr.Markdown( | |
LEADERBOARD_INTRODUCTION | |
) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π MEGA-Bench", elem_id="qa-tab-table1", id=1): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
lines=10, | |
) | |
gr.Markdown( | |
TABLE_INTRODUCTION | |
) | |
with gr.Row(): | |
table_selector = gr.Radio( | |
choices=["Default", "Single Image"], | |
label="Select table to display. Default: all MEGA-Bench tasks; Single Image: single-image tasks only.", | |
value="Default" | |
) | |
# Define different captions for each table | |
default_caption = "**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by rule-based metrics, and the Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a VLM judge (we use GPT-4o-0806). <br> Different from the results in our paper, we only use the Core results with CoT prompting here for clarity and compatibility with the released data. <br> $\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} \\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ " | |
single_image_caption = "**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks from the Open-ended set. For open-source models, we drop the image input in the 1-shot demonstration example so that the entire query contains a single image only. <br> Compared to the default table, some models with only single-image support are added." | |
caption_component = gr.Markdown( | |
value=default_caption, | |
elem_classes="table-caption", | |
latex_delimiters=[{"left": "$", "right": "$", "display": False}], | |
) | |
with gr.Row(): | |
super_group_selector = gr.Radio( | |
choices=list(default_loader.SUPER_GROUPS.keys()), | |
label="Select a dimension to display breakdown results. We use different column colors to distinguish the overall benchmark scores and breakdown results.", | |
value=list(default_loader.SUPER_GROUPS.keys())[0] | |
) | |
model_group_selector = gr.Radio( | |
choices=list(BASE_MODEL_GROUPS.keys()), | |
label="Select a model group", | |
value="All" | |
) | |
initial_headers, initial_data = default_loader.get_leaderboard_data(list(default_loader.SUPER_GROUPS.keys())[0], "All") | |
data_component = gr.Dataframe( | |
value=initial_data, | |
headers=initial_headers, | |
datatype=["number", "html"] + ["number"] * (len(initial_headers) - 2), | |
interactive=False, | |
elem_classes="custom-dataframe", | |
max_height=2400, | |
column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(initial_headers) - 5), | |
) | |
def update_table_and_caption(table_type, super_group, model_group): | |
if table_type == "Default": | |
headers, data = default_loader.get_leaderboard_data(super_group, model_group) | |
caption = default_caption | |
else: # Single-image | |
headers, data = si_loader.get_leaderboard_data(super_group, model_group) | |
caption = single_image_caption | |
return [ | |
gr.Dataframe( | |
value=data, | |
headers=headers, | |
datatype=["number", "html"] + ["number"] * (len(headers) - 2), | |
interactive=False, | |
column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(headers) - 5), | |
), | |
caption, | |
f"<style>{base_css}\n{table_css}</style>" | |
] | |
def update_selectors(table_type): | |
loader = default_loader if table_type == "Default" else si_loader | |
return [ | |
gr.Radio(choices=list(loader.SUPER_GROUPS.keys())), | |
gr.Radio(choices=list(loader.MODEL_GROUPS.keys())) | |
] | |
refresh_button = gr.Button("Refresh") | |
# Update click and change handlers to include caption updates | |
refresh_button.click( | |
fn=update_table_and_caption, | |
inputs=[table_selector, super_group_selector, model_group_selector], | |
outputs=[data_component, caption_component, css_style] | |
) | |
super_group_selector.change( | |
fn=update_table_and_caption, | |
inputs=[table_selector, super_group_selector, model_group_selector], | |
outputs=[data_component, caption_component, css_style] | |
) | |
model_group_selector.change( | |
fn=update_table_and_caption, | |
inputs=[table_selector, super_group_selector, model_group_selector], | |
outputs=[data_component, caption_component, css_style] | |
) | |
table_selector.change( | |
fn=update_selectors, | |
inputs=[table_selector], | |
outputs=[super_group_selector, model_group_selector] | |
).then( | |
fn=update_table_and_caption, | |
inputs=[table_selector, super_group_selector, model_group_selector], | |
outputs=[data_component, caption_component, css_style] | |
) | |
with gr.TabItem("π Data Information", elem_id="qa-tab-table2", id=2): | |
gr.Markdown(DATA_INFO, elem_classes="markdown-text") | |
with gr.TabItem("π Submit", elem_id="submit-tab", id=3): | |
with gr.Row(): | |
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") | |
if __name__ == "__main__": | |
block.launch(share=True) | |