TRACES commited on
Commit
157fc26
·
verified ·
1 Parent(s): 9b00171

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +19 -19
main.py CHANGED
@@ -11,11 +11,11 @@ from sklearn.feature_extraction.text import TfidfVectorizer
11
  def load_models():
12
  st.session_state.loaded = True
13
 
14
- with open('models/tfidf_vectorizer_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
15
- st.session_state.tfidf_vectorizer_untrue_inf = pickle.load(f)
16
 
17
- with open('models/SVM_model_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
18
- st.session_state.untrue_detector = pickle.load(f)
19
 
20
  st.session_state.bert_disinfo = pipeline(task="text-classification",
21
  model=BertForSequenceClassification.from_pretrained("usmiva/bert-desinform-bg", num_labels=2),
@@ -48,14 +48,14 @@ if 'lang' not in st.session_state:
48
 
49
  if all([
50
  'bert_gpt_result' not in st.session_state,
51
- 'untrue_detector_result' not in st.session_state,
52
  'bert_disinfo_result' not in st.session_state,
53
  'emotions_result' not in st.session_state
54
  ]):
55
  st.session_state.bert_gpt_result = [{'label': '', 'score': 1}]
56
 
57
- st.session_state.untrue_detector_result = ''
58
- st.session_state.untrue_detector_probability = 1
59
 
60
  st.session_state.bert_disinfo_result = [{'label': '', 'score': 1}]
61
 
@@ -98,10 +98,10 @@ if st.session_state.agree:
98
  if st.button(content['analyze_button'][st.session_state.lang]):
99
  st.session_state.bert_gpt_result = st.session_state.bert_gpt(user_input)
100
 
101
- user_tfidf_untrue_inf = st.session_state.tfidf_vectorizer_untrue_inf.transform([user_input])
102
- st.session_state.untrue_detector_result = st.session_state.untrue_detector.predict(user_tfidf_untrue_inf)[0]
103
- st.session_state.untrue_detector_probability = st.session_state.untrue_detector.predict_proba(user_tfidf_untrue_inf)[0]
104
- st.session_state.untrue_detector_probability = max(st.session_state.untrue_detector_probability[0], st.session_state.untrue_detector_probability[1])
105
 
106
  st.session_state.bert_disinfo_result = st.session_state.bert_disinfo(user_input)
107
 
@@ -118,14 +118,14 @@ if st.session_state.agree:
118
  str(round(st.session_state.bert_gpt_result[0]['score'] * 100, 2)) +
119
  content['bert_human_prob'][st.session_state.lang], icon="✅")
120
 
121
- if st.session_state.untrue_detector_result == 0:
122
- st.warning(content['untrue_getect_yes'][st.session_state.lang] +
123
- str(round(st.session_state.untrue_detector_probability * 100, 2)) +
124
- content['untrue_yes_proba'][st.session_state.lang], icon="⚠️")
125
- else:
126
- st.success(content['untrue_getect_no'][st.session_state.lang] +
127
- str(round(st.session_state.untrue_detector_probability * 100, 2)) +
128
- content['untrue_no_proba'][st.session_state.lang], icon="✅")
129
 
130
  if st.session_state.bert_disinfo_result[0]['label'] == 'LABEL_1':
131
  st.warning(content['bert_yes_1'][st.session_state.lang] +
 
11
  def load_models():
12
  st.session_state.loaded = True
13
 
14
+ # with open('models/tfidf_vectorizer_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
15
+ # st.session_state.tfidf_vectorizer_untrue_inf = pickle.load(f)
16
 
17
+ # with open('models/SVM_model_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
18
+ # st.session_state.untrue_detector = pickle.load(f)
19
 
20
  st.session_state.bert_disinfo = pipeline(task="text-classification",
21
  model=BertForSequenceClassification.from_pretrained("usmiva/bert-desinform-bg", num_labels=2),
 
48
 
49
  if all([
50
  'bert_gpt_result' not in st.session_state,
51
+ # 'untrue_detector_result' not in st.session_state,
52
  'bert_disinfo_result' not in st.session_state,
53
  'emotions_result' not in st.session_state
54
  ]):
55
  st.session_state.bert_gpt_result = [{'label': '', 'score': 1}]
56
 
57
+ # st.session_state.untrue_detector_result = ''
58
+ # st.session_state.untrue_detector_probability = 1
59
 
60
  st.session_state.bert_disinfo_result = [{'label': '', 'score': 1}]
61
 
 
98
  if st.button(content['analyze_button'][st.session_state.lang]):
99
  st.session_state.bert_gpt_result = st.session_state.bert_gpt(user_input)
100
 
101
+ # user_tfidf_untrue_inf = st.session_state.tfidf_vectorizer_untrue_inf.transform([user_input])
102
+ # st.session_state.untrue_detector_result = st.session_state.untrue_detector.predict(user_tfidf_untrue_inf)[0]
103
+ # st.session_state.untrue_detector_probability = st.session_state.untrue_detector.predict_proba(user_tfidf_untrue_inf)[0]
104
+ # st.session_state.untrue_detector_probability = max(st.session_state.untrue_detector_probability[0], st.session_state.untrue_detector_probability[1])
105
 
106
  st.session_state.bert_disinfo_result = st.session_state.bert_disinfo(user_input)
107
 
 
118
  str(round(st.session_state.bert_gpt_result[0]['score'] * 100, 2)) +
119
  content['bert_human_prob'][st.session_state.lang], icon="✅")
120
 
121
+ # if st.session_state.untrue_detector_result == 0:
122
+ # st.warning(content['untrue_getect_yes'][st.session_state.lang] +
123
+ # str(round(st.session_state.untrue_detector_probability * 100, 2)) +
124
+ # content['untrue_yes_proba'][st.session_state.lang], icon="⚠️")
125
+ # else:
126
+ # st.success(content['untrue_getect_no'][st.session_state.lang] +
127
+ # str(round(st.session_state.untrue_detector_probability * 100, 2)) +
128
+ # content['untrue_no_proba'][st.session_state.lang], icon="✅")
129
 
130
  if st.session_state.bert_disinfo_result[0]['label'] == 'LABEL_1':
131
  st.warning(content['bert_yes_1'][st.session_state.lang] +