Spaces:
Running
on
Zero
Running
on
Zero
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
from PIL import Image | |
import requests | |
import torch | |
from threading import Thread | |
import gradio as gr | |
from gradio import FileData | |
import time | |
import spaces | |
ckpt = "omkarthawakar/LlamaV-o1" | |
model = MllamaForConditionalGeneration.from_pretrained(ckpt, | |
torch_dtype=torch.bfloat16).to("cuda") | |
processor = AutoProcessor.from_pretrained(ckpt) | |
def bot_streaming(message, history, max_new_tokens=250): | |
txt = message["text"] | |
ext_buffer = f"{txt}" | |
messages= [] | |
images = [] | |
for i, msg in enumerate(history): | |
if isinstance(msg[0], tuple): | |
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]}) | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) | |
images.append(Image.open(msg[0][0]).convert("RGB")) | |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): | |
# messages are already handled | |
pass | |
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn | |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) | |
# add current message | |
if len(message["files"]) == 1: | |
if isinstance(message["files"][0], str): # examples | |
image = Image.open(message["files"][0]).convert("RGB") | |
else: # regular input | |
image = Image.open(message["files"][0]["path"]).convert("RGB") | |
images.append(image) | |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]}) | |
else: | |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) | |
texts = processor.apply_chat_template(messages, add_generation_prompt=True) | |
if images == []: | |
inputs = processor(text=texts, return_tensors="pt").to("cuda") | |
else: | |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer | |
time.sleep(0.01) | |
yield buffer | |
demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[ | |
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, | |
200], | |
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, | |
250], | |
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, | |
250], | |
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, | |
250], | |
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, | |
250], | |
], | |
textbox=gr.MultimodalTextbox(), | |
additional_inputs = [gr.Slider( | |
minimum=10, | |
maximum=8192, | |
value=250, | |
step=10, | |
label="Maximum number of new tokens to generate", | |
) | |
], | |
cache_examples=False, | |
description="Try Multimodal LlamaV-o1 with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. ", | |
stop_btn="Stop Generation", | |
fill_height=True, | |
multimodal=True) | |
demo.launch(debug=True) |