TastyRice commited on
Commit
159411c
·
verified ·
1 Parent(s): 5ab0963

Delete utils.py

Browse files
Files changed (1) hide show
  1. utils.py +0 -182
utils.py DELETED
@@ -1,182 +0,0 @@
1
- import gc
2
- import os
3
- import random
4
- import numpy as np
5
- import json
6
- import torch
7
- import uuid
8
- from PIL import Image, PngImagePlugin
9
- from datetime import datetime
10
- from dataclasses import dataclass
11
- from typing import Callable, Dict, Optional, Tuple
12
- from diffusers import (
13
- DDIMScheduler,
14
- DPMSolverMultistepScheduler,
15
- DPMSolverSinglestepScheduler,
16
- EulerAncestralDiscreteScheduler,
17
- EulerDiscreteScheduler,
18
- )
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
-
22
-
23
- @dataclass
24
- class StyleConfig:
25
- prompt: str
26
- negative_prompt: str
27
-
28
-
29
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
30
- if randomize_seed:
31
- seed = random.randint(0, MAX_SEED)
32
- return seed
33
-
34
-
35
- def seed_everything(seed: int) -> torch.Generator:
36
- torch.manual_seed(seed)
37
- torch.cuda.manual_seed_all(seed)
38
- np.random.seed(seed)
39
- generator = torch.Generator()
40
- generator.manual_seed(seed)
41
- return generator
42
-
43
-
44
- def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]:
45
- if aspect_ratio == "Custom":
46
- return None
47
- width, height = aspect_ratio.split(" x ")
48
- return int(width), int(height)
49
-
50
-
51
- def aspect_ratio_handler(
52
- aspect_ratio: str, custom_width: int, custom_height: int
53
- ) -> Tuple[int, int]:
54
- if aspect_ratio == "Custom":
55
- return custom_width, custom_height
56
- else:
57
- width, height = parse_aspect_ratio(aspect_ratio)
58
- return width, height
59
-
60
-
61
- def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
62
- scheduler_factory_map = {
63
- "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
64
- scheduler_config, use_karras_sigmas=True
65
- ),
66
- "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
67
- scheduler_config, use_karras_sigmas=True
68
- ),
69
- "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
70
- scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
71
- ),
72
- "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
73
- "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
74
- scheduler_config
75
- ),
76
- "DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
77
- }
78
- return scheduler_factory_map.get(name, lambda: None)()
79
-
80
-
81
- def free_memory() -> None:
82
- torch.cuda.empty_cache()
83
- gc.collect()
84
-
85
-
86
- def preprocess_prompt(
87
- style_dict,
88
- style_name: str,
89
- positive: str,
90
- negative: str = "",
91
- add_style: bool = True,
92
- ) -> Tuple[str, str]:
93
- p, n = style_dict.get(style_name, style_dict["(None)"])
94
-
95
- if add_style and positive.strip():
96
- formatted_positive = p.format(prompt=positive)
97
- else:
98
- formatted_positive = positive
99
-
100
- combined_negative = n
101
- if negative.strip():
102
- if combined_negative:
103
- combined_negative += ", " + negative
104
- else:
105
- combined_negative = negative
106
-
107
- return formatted_positive, combined_negative
108
-
109
-
110
- def common_upscale(
111
- samples: torch.Tensor,
112
- width: int,
113
- height: int,
114
- upscale_method: str,
115
- ) -> torch.Tensor:
116
- return torch.nn.functional.interpolate(
117
- samples, size=(height, width), mode=upscale_method
118
- )
119
-
120
-
121
- def upscale(
122
- samples: torch.Tensor, upscale_method: str, scale_by: float
123
- ) -> torch.Tensor:
124
- width = round(samples.shape[3] * scale_by)
125
- height = round(samples.shape[2] * scale_by)
126
- return common_upscale(samples, width, height, upscale_method)
127
-
128
-
129
- def load_wildcard_files(wildcard_dir: str) -> Dict[str, str]:
130
- wildcard_files = {}
131
- for file in os.listdir(wildcard_dir):
132
- if file.endswith(".txt"):
133
- key = f"__{file.split('.')[0]}__" # Create a key like __character__
134
- wildcard_files[key] = os.path.join(wildcard_dir, file)
135
- return wildcard_files
136
-
137
-
138
- def get_random_line_from_file(file_path: str) -> str:
139
- with open(file_path, "r") as file:
140
- lines = file.readlines()
141
- if not lines:
142
- return ""
143
- return random.choice(lines).strip()
144
-
145
-
146
- def add_wildcard(prompt: str, wildcard_files: Dict[str, str]) -> str:
147
- for key, file_path in wildcard_files.items():
148
- if key in prompt:
149
- wildcard_line = get_random_line_from_file(file_path)
150
- prompt = prompt.replace(key, wildcard_line)
151
- return prompt
152
-
153
-
154
- def preprocess_image_dimensions(width, height):
155
- if width % 8 != 0:
156
- width = width - (width % 8)
157
- if height % 8 != 0:
158
- height = height - (height % 8)
159
- return width, height
160
-
161
-
162
- def save_image(image, metadata, output_dir, is_colab):
163
- if is_colab:
164
- current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
165
- filename = f"image_{current_time}.png"
166
- else:
167
- filename = str(uuid.uuid4()) + ".png"
168
- os.makedirs(output_dir, exist_ok=True)
169
- filepath = os.path.join(output_dir, filename)
170
- metadata_str = json.dumps(metadata)
171
- info = PngImagePlugin.PngInfo()
172
- info.add_text("metadata", metadata_str)
173
- image.save(filepath, "PNG", pnginfo=info)
174
- return filepath
175
-
176
-
177
- def is_google_colab():
178
- try:
179
- import google.colab
180
- return True
181
- except:
182
- return False