radames's picture
Update app.py
2918353
raw
history blame
12 kB
import gradio as gr
import json
from difflib import Differ
import ffmpeg
import os
from pathlib import Path
import time
import aiohttp
import asyncio
# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
API_BACKEND = True
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
# MODEL = "facebook/wav2vec2-large-960h"
MODEL = "facebook/wav2vec2-base-960h"
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
if API_BACKEND:
from dotenv import load_dotenv
import base64
import asyncio
load_dotenv(Path(".env"))
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
API_URL = f'https://api-inference.huggingface.co/models/{MODEL}'
else:
import torch
from transformers import pipeline
# is cuda available?
cuda = torch.device(
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
device = 0 if torch.cuda.is_available() else -1
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model=f'{MODEL}',
tokenizer=f'{MODEL}',
framework="pt",
device=device,
)
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)
samples_data = sorted(Path('examples').glob('*.json'))
SAMPLES = []
for file in samples_data:
with open(file) as f:
sample = json.load(f)
SAMPLES.append(sample)
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
total_inferences_since_reboot = 415
total_cuts_since_reboot = 1539
async def speech_to_text(video_file_path):
"""
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
"""
global total_inferences_since_reboot
if (video_file_path == None):
raise ValueError("Error no video input")
video_path = Path(video_file_path)
try:
# convert video to audio 16k using PIPE to audio_memory
audio_memory, _ = ffmpeg.input(video_path).output(
'-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
except Exception as e:
raise RuntimeError("Error converting video to audio")
ping("speech_to_text")
last_time = time.time()
if API_BACKEND:
# Using Inference API https://huggingface.co/inference-api
# try twice, because the model must be loaded
for i in range(10):
for tries in range(4):
print(f'Transcribing from API attempt {tries}')
try:
inference_reponse = await query_api(audio_memory)
print(inference_reponse)
transcription = inference_reponse["text"].lower()
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
for chunk in inference_reponse['chunks']]
total_inferences_since_reboot += 1
print("\n\ntotal_inferences_since_reboot: ",
total_inferences_since_reboot, "\n\n")
return (transcription, transcription, timestamps)
except Exception as e:
print(e)
if 'error' in inference_reponse and 'estimated_time' in inference_reponse:
wait_time = inference_reponse['estimated_time']
print("Waiting for model to load....", wait_time)
# wait for loading model
# 5 seconds plus for certanty
await asyncio.sleep(wait_time + 5.0)
elif 'error' in inference_reponse:
raise RuntimeError("Error Fetching API",
inference_reponse['error'])
else:
break
else:
raise RuntimeError(inference_reponse, "Error Fetching API")
else:
try:
print(f'Transcribing via local model')
output = speech_recognizer(
audio_memory, return_timestamps="char", chunk_length_s=10, stride_length_s=(4, 2))
transcription = output["text"].lower()
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0].tolist(), chunk["timestamp"][1].tolist()]
for chunk in output['chunks']]
total_inferences_since_reboot += 1
print("\n\ntotal_inferences_since_reboot: ",
total_inferences_since_reboot, "\n\n")
return (transcription, transcription, timestamps)
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
"""
Given original video input, text transcript + timestamps,
and edit ext cuts video segments into a single video
"""
global total_cuts_since_reboot
video_path = Path(video_in)
video_file_name = video_path.stem
if (video_in == None or text_in == None or transcription == None):
raise ValueError("Inputs undefined")
d = Differ()
# compare original transcription with edit text
diff_chars = d.compare(transcription, text_in)
# remove all text aditions from diff
filtered = list(filter(lambda x: x[0] != '+', diff_chars))
# filter timestamps to be removed
# timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
# return diff tokes and cutted video!!
# groupping character timestamps so there are less cuts
idx = 0
grouped = {}
for (a, b) in zip(filtered, timestamps):
if a[0] != '-':
if idx in grouped:
grouped[idx].append(b)
else:
grouped[idx] = []
grouped[idx].append(b)
else:
idx += 1
# after grouping, gets the lower and upter start and time for each group
timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]
between_str = '+'.join(
map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))
if timestamps_to_cut:
video_file = ffmpeg.input(video_in)
video = video_file.video.filter(
"select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
audio = video_file.audio.filter(
"aselect", f'({between_str})').filter("asetpts", "N/SR/TB")
output_video = f'./videos_out/{video_file_name}.mp4'
ffmpeg.concat(video, audio, v=1, a=1).output(
output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
else:
output_video = video_in
tokens = [(token[2:], token[0] if token[0] != " " else None)
for token in filtered]
total_cuts_since_reboot += 1
ping("video_cuts")
print("\n\ntotal_cuts_since_reboot: ", total_cuts_since_reboot, "\n\n")
return (tokens, output_video)
async def query_api(audio_bytes: bytes):
"""
Query for Huggingface Inference API for Automatic Speech Recognition task
"""
payload = json.dumps({
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
"parameters": {
"return_timestamps": "char",
"chunk_length_s": 10,
"stride_length_s": [4, 2]
},
"options": {"use_gpu": False}
}).encode("utf-8")
async with aiohttp.ClientSession() as session:
async with session.post(API_URL, headers=headers, data=payload) as response:
print("API Response: ", response.status)
if response.headers['Content-Type'] == 'application/json':
return await response.json()
elif response.headers['Content-Type'] == 'application/octet-stream':
return await response.read()
elif response.headers['Content-Type'] == 'text/plain':
return await response.text()
else:
raise RuntimeError("Error Fetching API")
def ping(name):
url = f'https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}'
print("ping: ", url)
async def req():
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
print("pong: ", response.status)
asyncio.create_task(req())
# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", elem_id="video-container")
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
video_out = gr.Video(label="Video Out")
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
examples = gr.Dataset(components=[video_in], samples=VIDEOS, type="index")
css = """
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
#video-container{
max-width: 40rem;
}
"""
with gr.Blocks(css=css) as demo:
transcription_var = gr.State()
timestamps_var = gr.State()
with gr.Row():
with gr.Column():
gr.Markdown("""
# Edit Video By Editing Text
This project is a quick proof of concept of a simple video editor where the edits
are made by editing the audio transcription.
Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
with a fine tuned [Wav2Vec2 model using Connectionist Temporal Classification (CTC)](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self)
you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
""")
with gr.Row():
examples.render()
def load_example(id):
video = SAMPLES[id]['video']
transcription = SAMPLES[id]['transcription'].lower()
timestamps = SAMPLES[id]['timestamps']
return (video, transcription, transcription, timestamps)
examples.click(
load_example,
inputs=[examples],
outputs=[video_in, text_in, transcription_var, timestamps_var],
queue=False)
with gr.Row():
with gr.Column():
video_in.render()
transcribe_btn = gr.Button("Transcribe Audio")
transcribe_btn.click(speech_to_text, [video_in], [
text_in, transcription_var, timestamps_var])
with gr.Row():
gr.Markdown("""
### Now edit as text
After running the video transcription, you can make cuts to the text below (only cuts, not additions!)""")
with gr.Row():
with gr.Column():
text_in.render()
with gr.Row():
cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
# send audio path and hidden variables
cut_btn.click(cut_timestamps_to_video, [
video_in, transcription_var, text_in, timestamps_var], [diff_out, video_out])
reset_transcription = gr.Button(
"Reset to last trascription", elem_id="reset_btn")
reset_transcription.click(
lambda x: x, transcription_var, text_in)
with gr.Column():
video_out.render()
diff_out.render()
with gr.Row():
gr.Markdown("""
#### Video Credits
1. [Cooking](https://vimeo.com/573792389)
1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
""")
demo.queue()
if __name__ == "__main__":
demo.launch(debug=True)