Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import torch | |
# Load the Whisper model | |
model_id = "openai/whisper-tiny.en" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline("automatic-speech-recognition", model=model_id, device=device) | |
def transcribe_audio(audio_file): | |
# Read audio file | |
audio_bytes = audio_file.read() | |
# Get transcription results | |
results = pipe(audio_bytes) | |
# Return the transcription | |
return results | |
# Streamlit interface | |
st.title("Speech to Text with Whisper") | |
audio_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3', 'ogg']) | |
if audio_file is not None: | |
# Display a button to transcribe the audio | |
if st.button('Transcribe'): | |
with st.spinner(f'Transcribing audio...'): | |
transcription = transcribe_audio(audio_file) | |
st.text_area("Transcription", transcription['text'], height=150) |