Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from llama_cpp import Llama | |
# Initialize the InferenceClient | |
client = InferenceClient() | |
llm = Llama.from_pretrained( | |
repo_id="bartowski/Reasoning-Llama-1b-v0.1-GGUF", | |
filename="Reasoning-Llama-1b-v0.1-f16.gguf", | |
) | |
# Fixed system message | |
FIXED_SYSTEM_MESSAGE = "You are an artifial inteligence created by the ACC(Algorithmic Computer-generated Consciousness)." | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
user_system_message, # User-configurable system message | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Combine the fixed and user-provided system messages | |
combined_system_message = f"{FIXED_SYSTEM_MESSAGE} {user_system_message}" | |
# Construct the messages list | |
messages = [{"role": "system", "content": combined_system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Use the client to get the chat completion | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message['choices'][0]['delta']['content'] | |
response += token | |
yield response | |
# Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System Message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum response length"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Neural Activity", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |