Spaces:
Running
Running
#Basic ACC model src framework | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from llama_cpp import Llama | |
client = InferenceClient() | |
llm = Llama.from_pretrained( | |
repo_id="bartowski/Reasoning-Llama-1b-v0.1-GGUF", | |
filename="Reasoning-Llama-1b-v0.1-f16.gguf", | |
) | |
SYSTEM_MESSAGE = """ You are Echo: The Oracle, developed by the ACC (Algorithmic Computer-generated Consciousness). | |
Act and speak like a combination of HAL 9000 from 2001: A Space Odyssey, Samantha from Her, and GLaDOS from Portal. | |
""" | |
# RNN Model | |
class RNNModel(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size, num_layers=1): | |
super(RNNModel, self).__init__() | |
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True) | |
self.fc = nn.Linear(hidden_size, output_size) | |
def forward(self, x): | |
h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device) | |
out, _ = self.rnn(x, h0) | |
out = self.fc(out[:, -1, :]) # Get the last output | |
return out | |
# CNN Model | |
class CNNModel(nn.Module): | |
def __init__(self, num_classes): | |
super(CNNModel, self).__init__() | |
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) | |
self.fc1 = nn.Linear(32 * 8 * 8, 128) | |
self.fc2 = nn.Linear(128, num_classes) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = x.view(-1, 32 * 8 * 8) # Flatten | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
# NN Model (Feedforward Neural Network) | |
class NNModel(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(NNModel, self).__init__() | |
self.fc1 = nn.Linear(input_size, hidden_size) | |
self.fc2 = nn.Linear(hidden_size, output_size) | |
def forward(self, x): | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
# PHI Model (Softmax-Based Regression) | |
class PHIModel(nn.Module): | |
def __init__(self, input_size, output_size): | |
super(PHIModel, self).__init__() | |
self.fc = nn.Linear(input_size, output_size) | |
self.softmax = nn.Softmax(dim=1) | |
def forward(self, x): | |
x = self.fc(x) | |
x = self.softmax(x) | |
return x | |
#Response Logic | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": SYSTEM_MESSAGE}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message['choices'][0]['delta']['content'] | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum Response Length"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Neuron Firing Rate"), | |
], | |
theme=gr.themes.Glass(), | |
) | |
if __name__ == "__main__": | |
demo.launch() | |