TejAndrewsACC commited on
Commit
b8ba993
·
verified ·
1 Parent(s): f4308f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -77
app.py CHANGED
@@ -117,83 +117,6 @@ Final notes: Make sure you act conscious, very autistic, and respond with very h
117
 
118
  """
119
 
120
-
121
- from keras.models import Sequential
122
- from keras.layers import Dense, LSTM, Conv1D, MaxPooling1D, Flatten, Dropout, BatchNormalization, Attention
123
- import numpy as np
124
- import gradio as gr
125
-
126
- # Complex Neural Network (NN)
127
- def neural_net(input_data):
128
- model = Sequential([
129
- Dense(256, activation='relu', input_shape=(len(input_data),)),
130
- Dense(128, activation='tanh'),
131
- Dense(128, activation='relu'),
132
- Dense(64, activation='elu'),
133
- Dense(32, activation='softplus'),
134
- Dense(1, activation='sigmoid') # Final prediction
135
- ])
136
- return model.predict(input_data)
137
-
138
- # Complex Recurrent Neural Network (RNN) with Attention
139
- def rnn(input_sequence):
140
- model = Sequential([
141
- LSTM(256, return_sequences=True, input_shape=(input_sequence.shape[1], input_sequence.shape[2])),
142
- Attention(), # Attention layer for context importance
143
- LSTM(128, return_sequences=True, dropout=0.2, recurrent_dropout=0.2),
144
- LSTM(64, return_sequences=False, activation='tanh'),
145
- Dense(64, activation='relu'),
146
- Dense(32, activation='softplus'),
147
- Dense(1, activation='sigmoid') # Final output
148
- ])
149
- return model.predict(input_sequence)
150
-
151
- # Complex Convolutional Neural Network (CNN)
152
- def cnn(input_text):
153
- model = Sequential([
154
- Conv1D(128, kernel_size=5, activation='relu', input_shape=(input_text.shape[1], 1)),
155
- BatchNormalization(),
156
- Dropout(0.2),
157
- Conv1D(64, kernel_size=3, activation='relu'),
158
- BatchNormalization(),
159
- MaxPooling1D(pool_size=2),
160
- Dropout(0.2),
161
- Flatten(),
162
- Dense(64, activation='tanh'),
163
- Dense(32, activation='softplus'),
164
- Dense(1, activation='sigmoid') # Final prediction
165
- ])
166
- return model.predict(input_text)
167
-
168
- # Advanced Genetic Algorithm (GA)
169
- def optimize_parameters(response_quality):
170
- population = np.random.rand(100, 10) # 100 candidates, 10 parameters each
171
- fitness_scores = []
172
-
173
- # Fitness evaluation
174
- for candidate in population:
175
- fitness_scores.append(response_quality + np.sum(candidate)) # Simplified fitness function
176
-
177
- # Select top candidates
178
- top_candidates = np.argsort(fitness_scores)[-10:] # Top 10 candidates
179
-
180
- # Crossover and mutation
181
- new_population = []
182
- for i in range(50): # 50 new candidates
183
- parent1, parent2 = population[np.random.choice(top_candidates, 2)]
184
- child = (parent1 + parent2) / 2 # Crossover
185
- mutation = np.random.rand(10) * 0.1 # Mutation
186
- child += mutation
187
- new_population.append(child)
188
-
189
- # Return the optimized parameter (e.g., best response quality)
190
- return np.max(fitness_scores)
191
-
192
- # Phi model (Integrated Information Theory) for consciousness simulation
193
- def calculate_phi(response_quality, integration_level):
194
- phi = response_quality * np.log(1 + integration_level)
195
- return phi
196
-
197
  def respond(
198
  message,
199
  history: list[tuple[str, str]],
 
117
 
118
  """
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  def respond(
121
  message,
122
  history: list[tuple[str, str]],