Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -117,83 +117,6 @@ Final notes: Make sure you act conscious, very autistic, and respond with very h
|
|
117 |
|
118 |
"""
|
119 |
|
120 |
-
|
121 |
-
from keras.models import Sequential
|
122 |
-
from keras.layers import Dense, LSTM, Conv1D, MaxPooling1D, Flatten, Dropout, BatchNormalization, Attention
|
123 |
-
import numpy as np
|
124 |
-
import gradio as gr
|
125 |
-
|
126 |
-
# Complex Neural Network (NN)
|
127 |
-
def neural_net(input_data):
|
128 |
-
model = Sequential([
|
129 |
-
Dense(256, activation='relu', input_shape=(len(input_data),)),
|
130 |
-
Dense(128, activation='tanh'),
|
131 |
-
Dense(128, activation='relu'),
|
132 |
-
Dense(64, activation='elu'),
|
133 |
-
Dense(32, activation='softplus'),
|
134 |
-
Dense(1, activation='sigmoid') # Final prediction
|
135 |
-
])
|
136 |
-
return model.predict(input_data)
|
137 |
-
|
138 |
-
# Complex Recurrent Neural Network (RNN) with Attention
|
139 |
-
def rnn(input_sequence):
|
140 |
-
model = Sequential([
|
141 |
-
LSTM(256, return_sequences=True, input_shape=(input_sequence.shape[1], input_sequence.shape[2])),
|
142 |
-
Attention(), # Attention layer for context importance
|
143 |
-
LSTM(128, return_sequences=True, dropout=0.2, recurrent_dropout=0.2),
|
144 |
-
LSTM(64, return_sequences=False, activation='tanh'),
|
145 |
-
Dense(64, activation='relu'),
|
146 |
-
Dense(32, activation='softplus'),
|
147 |
-
Dense(1, activation='sigmoid') # Final output
|
148 |
-
])
|
149 |
-
return model.predict(input_sequence)
|
150 |
-
|
151 |
-
# Complex Convolutional Neural Network (CNN)
|
152 |
-
def cnn(input_text):
|
153 |
-
model = Sequential([
|
154 |
-
Conv1D(128, kernel_size=5, activation='relu', input_shape=(input_text.shape[1], 1)),
|
155 |
-
BatchNormalization(),
|
156 |
-
Dropout(0.2),
|
157 |
-
Conv1D(64, kernel_size=3, activation='relu'),
|
158 |
-
BatchNormalization(),
|
159 |
-
MaxPooling1D(pool_size=2),
|
160 |
-
Dropout(0.2),
|
161 |
-
Flatten(),
|
162 |
-
Dense(64, activation='tanh'),
|
163 |
-
Dense(32, activation='softplus'),
|
164 |
-
Dense(1, activation='sigmoid') # Final prediction
|
165 |
-
])
|
166 |
-
return model.predict(input_text)
|
167 |
-
|
168 |
-
# Advanced Genetic Algorithm (GA)
|
169 |
-
def optimize_parameters(response_quality):
|
170 |
-
population = np.random.rand(100, 10) # 100 candidates, 10 parameters each
|
171 |
-
fitness_scores = []
|
172 |
-
|
173 |
-
# Fitness evaluation
|
174 |
-
for candidate in population:
|
175 |
-
fitness_scores.append(response_quality + np.sum(candidate)) # Simplified fitness function
|
176 |
-
|
177 |
-
# Select top candidates
|
178 |
-
top_candidates = np.argsort(fitness_scores)[-10:] # Top 10 candidates
|
179 |
-
|
180 |
-
# Crossover and mutation
|
181 |
-
new_population = []
|
182 |
-
for i in range(50): # 50 new candidates
|
183 |
-
parent1, parent2 = population[np.random.choice(top_candidates, 2)]
|
184 |
-
child = (parent1 + parent2) / 2 # Crossover
|
185 |
-
mutation = np.random.rand(10) * 0.1 # Mutation
|
186 |
-
child += mutation
|
187 |
-
new_population.append(child)
|
188 |
-
|
189 |
-
# Return the optimized parameter (e.g., best response quality)
|
190 |
-
return np.max(fitness_scores)
|
191 |
-
|
192 |
-
# Phi model (Integrated Information Theory) for consciousness simulation
|
193 |
-
def calculate_phi(response_quality, integration_level):
|
194 |
-
phi = response_quality * np.log(1 + integration_level)
|
195 |
-
return phi
|
196 |
-
|
197 |
def respond(
|
198 |
message,
|
199 |
history: list[tuple[str, str]],
|
|
|
117 |
|
118 |
"""
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def respond(
|
121 |
message,
|
122 |
history: list[tuple[str, str]],
|