Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,296 Bytes
b6a9b6d 5e17843 b6a9b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import numpy as np
import cv2
import gin
import bpy
import gc
import logging
import time
import argparse
from pathlib import Path
import importlib
import json
import copy
import imgaug
import imgaug.augmenters as iaa
from core.utils.io import read_list_from_txt
from multiprocessing import Pool
import torch
from core.utils.dinov2 import Dinov2Model
logging.basicConfig(
format="[%(asctime)s.%(msecs)03d] [%(module)s] [%(levelname)s] | %(message)s",
datefmt="%H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
import infinigen
from infinigen.core import init, surface
from infinigen.assets.utils.decorate import read_co
from infinigen.assets.utils.misc import assign_material
from infinigen.core.util import blender as butil
from infinigen.assets.lighting import (
hdri_lighting,
holdout_lighting,
sky_lighting,
three_point_lighting,
)
from core.utils.camera import convert_sphere_to_xyz, setup_camera
from core.utils.vis_utils import colorObj, setMat_plastic
# augment
color_aug = iaa.Sequential([
# color aug
iaa.WithBrightnessChannels(iaa.Add((-50, 50))),
iaa.GammaContrast((0.7, 1.5), per_channel=True),
iaa.AddToHueAndSaturation((-60, 60)),
iaa.Grayscale((0.0, 0.8)),
])
flip_aug = iaa.Sequential([iaa.Fliplr(0.5)])
crop_aug = iaa.Sequential([
iaa.CropAndPad(percent=(-0.1, 0.1), pad_mode='constant', pad_cval=(0, 0), keep_size=False),
iaa.CropToFixedSize(height=256, width=256),
iaa.PadToFixedSize(height=256, width=256)
])
crop_resize_aug = iaa.KeepSizeByResize(iaa.Crop(percent=(0, 0.1), sample_independently=False, keep_size=False))
def aug(name, save_root, num_aug, flip=True, crop=True):
"""Do the augmentation to RGBA image
"""
id, name = name.split("/")
img_rgba = cv2.imread(os.path.join(save_root, id, name), -1) # rgba
img = cv2.cvtColor(img_rgba[:,:,:3], cv2.COLOR_BGR2RGB)
img = np.concatenate([img, img_rgba[:,:,3:]], axis=2) # rgba
save_dir = os.path.join(save_root, id)
os.makedirs(save_dir, exist_ok=True)
for j in range(num_aug):
# do the augmentation here
image, mask = copy.deepcopy(img[:,:,:3]), copy.deepcopy(img[:,:,3:])
# aug color
if np.random.rand() < 0.8:
image = color_aug(image=image)
# flip
if flip:
image = flip_aug(image=np.concatenate([image, mask], axis=-1))
else:
image = np.concatenate([image, mask], axis=-1)
# crop
if crop:
if np.random.rand() < 0.5:
# crop & pad
image = crop_aug(image=image)
else:
# crop & resize
image = crop_resize_aug(image=image)
if np.random.rand() < 0.1:
# binary image using mask
image, mask = image[:, :, :3], image[:, :, 3:]
# black image
image = np.tile(255 * (1.0 - (mask > 0)), (1,1,3)).astype(np.uint8)
image = np.concatenate([image, mask], axis=-1)
if np.random.rand() < 0.2:
image, mask = image[:, :, :3], image[:, :, 3:]
edge = np.expand_dims(cv2.Canny(mask, 100, 200), -1)
mask = (edge > 0).astype(np.uint8)
# convert edge into black
edge = 255 * (1.0 - mask)
image = np.tile(edge, (1,1,3)).astype(np.uint8)
image = np.concatenate([image, mask], axis=-1)
# save
save_name = os.path.join(save_dir, "{}_aug_{}.png".format(name[:-4], j))
cv2.imwrite(save_name, image)
print(name)
def randomize_params(params_dict):
# Initialize the parameters
selected_params = {}
for key, value in params_dict.items():
if value[0] == 'continuous':
min_v, max_v = value[1][0], value[1][1]
selected_params[key] = np.random.uniform(min_v, max_v)
elif value[0] == 'discrete':
choice_list = value[1]
selected_params[key] = np.random.choice(choice_list)
else:
raise NotImplementedError
return selected_params
def generate(generator, params, seed, save_dir=None, save_name=None,
save_blend=False, save_img=False, save_untexture_img=False, save_gif=False, save_mesh=False,
cam_dists=[], cam_elevations=[], cam_azimuths=[], zoff=0,
resolution='256x256', sample=100, no_mod=False, no_ground=True,
window=None, screen=None):
print("Generating")
# reset to default
bpy.ops.wm.read_homefile(app_template="")
butil.clear_scene()
# Suppress info messages
bpy.ops.outliner.orphans_purge()
gc.collect()
# configurate infinigen
gin.add_config_file_search_path("configs/infinigen")
gin.parse_config_files_and_bindings(
["configs/infinigen/base.gin"],
bindings=[],
skip_unknown=True,
finalize_config=False,
)
surface.registry.initialize_from_gin()
# setup the scene
scene = bpy.context.scene
scene.render.engine = "CYCLES"
scene.cycles.device = "GPU"
scene.render.film_transparent = True
bpy.context.preferences.system.scrollback = 0
bpy.context.preferences.edit.undo_steps = 0
prefs = bpy.context.preferences.addons["cycles"].preferences
for dt in prefs.get_device_types(bpy.context):
prefs.get_devices_for_type(dt[0])
bpy.context.preferences.addons["cycles"].preferences.compute_device_type = "CUDA"
use_devices = [d for d in prefs.devices if d.type == "CUDA"]
for d in prefs.devices:
d.use = False
for d in use_devices:
d.use = True
scene.render.resolution_x, scene.render.resolution_y = map(
int, resolution.split("x")
)
scene.cycles.samples = sample
bpy.context.scene.render.use_persistent_data = True
bpy.context.scene.world.node_tree.nodes["Background"].inputs[0].default_value[0:3] = (0.0, 0.0, 0.0)
# update the parameters
generator.update_params(params)
# generate the object
asset = generator.spawn_asset(seed)
generator.finalize_assets(asset)
parent = asset
if asset.type == "EMPTY":
meshes = [o for o in asset.children_recursive if o.type == "MESH"]
sizes = []
for m in meshes:
co = read_co(m)
sizes.append((np.amax(co, 0) - np.amin(co, 0)).sum())
i = np.argmax(np.array(sizes))
asset = meshes[i]
if not no_mod:
if parent.animation_data is not None:
drivers = parent.animation_data.drivers.values()
for d in drivers:
parent.driver_remove(d.data_path)
co = read_co(asset)
x_min, x_max = np.amin(co, 0), np.amax(co, 0)
parent.location = -(x_min[0] + x_max[0]) / 2, -(x_min[1] + x_max[1]) / 2, 0
butil.apply_transform(parent, loc=True)
if not no_ground:
bpy.ops.mesh.primitive_grid_add(
size=5, x_subdivisions=400, y_subdivisions=400
)
plane = bpy.context.active_object
plane.location[-1] = x_min[-1]
plane.is_shadow_catcher = True
material = bpy.data.materials.new("plane")
material.use_nodes = True
material.node_tree.nodes["Principled BSDF"].inputs[0].default_value = (
0.015,
0.009,
0.003,
1,
)
assign_material(plane, material)
if save_blend:
# visualize the generated model by rendering
butil.save_blend(f"{save_dir}/{save_name}.blend", autopack=True)
# render image
if save_img:
sky_lighting.add_lighting()
scene.render.image_settings.file_format = "PNG"
scene.render.image_settings.color_mode = "RGBA"
nodes = bpy.data.worlds["World"].node_tree.nodes
sky_texture = [n for n in nodes if n.name.startswith("Sky Texture")][-1]
sky_texture.sun_elevation = np.deg2rad(60)
sky_texture.sun_rotation = np.pi * 0.75
for cd in cam_dists:
for ce in cam_elevations:
for ca in cam_azimuths:
save_name_full = f"{save_name}_{cd}_{ce}_{ca}"
cam_data = convert_sphere_to_xyz(cd, ce, ca)
cam_location, cam_rot = cam_data[:3], cam_data[3:]
cam_location[-1] += zoff # TODO: fix the table case
camera = setup_camera(cam_location=cam_location, cam_rot=cam_rot)
cam_info_ng = bpy.data.node_groups.get("nodegroup_active_cam_info")
if cam_info_ng is not None:
cam_info_ng.nodes["Object Info"].inputs["Object"].default_value = camera
image_path = str(f"{save_dir}/{save_name_full}_texture.png")
scene.render.filepath = image_path
bpy.ops.render.render(write_still=True)
# render untextured object
if save_untexture_img:
bpy.ops.object.shade_smooth()
asset.data.materials.clear()
# untextured model
#RGBA = (144.0/255, 210.0/255, 236.0/255, 1)
RGBA = (192.0/255, 192.0/255, 192.0/255, 1)
meshColor = colorObj(RGBA, 0.5, 1.0, 1.0, 0.0, 2.0)
setMat_plastic(asset, meshColor)
image_path = str(f"{save_dir}/{save_name_full}_geometry.png")
scene.render.filepath = image_path
bpy.ops.render.render(write_still=True)
# render gif of object rotating
if save_gif:
save_gif_dir = os.path.join(save_dir, "gif")
os.makedirs(save_gif_dir, exist_ok=True)
bpy.context.scene.frame_end = 60
asset_parent = asset if asset.parent is None else asset.parent
asset_parent.driver_add("rotation_euler")[-1].driver.expression = f"frame/{60 / (2 * np.pi * 1)}"
imgpath = str(f"{save_gif_dir}/{save_name}_###.png")
scene.render.filepath = str(imgpath)
bpy.ops.render.render(animation=True)
from core.utils.io import make_gif
all_imgpaths = [str(os.path.join(save_gif_dir, p)) for p in sorted(os.listdir(save_gif_dir)) if p.endswith('.png')]
make_gif(f"{save_gif_dir}/{save_name}.gif", all_imgpaths)
# dump mesh model
if save_mesh:
save_mesh_filepath = os.path.join(save_dir, save_name+".glb")
bpy.ops.export_scene.gltf(filepath=save_mesh_filepath)
print("Mesh saved in {}".format(save_mesh_filepath))
return asset, image_path
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument('--generator', type=str, default='ChairFactory',
help='Supported generator: [ChairFactory, VaseFactory, TableDiningFactory, BasketBaseFactory, FlowerFactory, DandelionFactory]')
argparser.add_argument('--save_root', type=str, required=True)
argparser.add_argument('--total_num', type=int, default=20000)
argparser.add_argument('--aug_num', type=int, default=5)
argparser.add_argument('--batch_size', type=int, default=1000)
argparser.add_argument('--seed', type=int, default=0)
args = argparser.parse_args()
# setup
"""Training image rendering settings
Chair: cam_dists - [1.8, 2.0], elevations: [50, 60, 80], azimuths: [0, 30, 60, 80], zoff: 0.0
Vase: cam_dists - [1.2, 1.6, 2.0], elevations: [60, 80, 90], azimuths: [0], zoff: 0.3
Table: cam_dists - [5.0, 6.0], elevations: [60, 70], azimuths: [0, 30, 60], zoff: 0.1
Flower: cam_dists - [3.0, 4.0], elevations: [20, 30, 50, 60], azimuths: [0], zoff: 0
Dandelion: cam_dists - [3.0], elevations: [90], azimuths: [0], zoff: 0.5
Basket: cam_dists - [1.2, 1.6], elevations: [50, 60, 70], azimuths: [30, 60], zoff: 0.0
"""
np.random.seed(args.seed)
flip, crop = True, True
# Different training data rendering settings for different generators to improve efficiency
if args.generator == "ChairFactory":
cam_dists = [1.8, 2.0]
elevations = [50, 60, 80]
azimuths = [0, 30, 60, 80]
zoff = 0.0
elif args.generator == "TableDiningFactory":
cam_dists = [5.0, 6.0]
elevations = [60, 70]
azimuths = [0, 30, 60, 90]
zoff = 0.1
elif args.generator == "VaseFactory":
cam_dists = [1.2, 1.6, 2.0]
elevations = [60, 80, 90]
azimuths = [0]
zoff = 0.3
elif args.generator == "BasketBaseFactory":
cam_dists = [1.2, 1.6]
elevations = [50, 60, 70]
azimuths = [30, 60]
zoff = 0.0
elif args.generator == "FlowerFactory":
cam_dists = [2.0, 3.0, 4.0]
elevations = [30, 50, 60, 80]
azimuths = [0]
zoff = 0
elif args.generator == "DandelionFactory":
cam_dists = [3.0]
elevations = [90]
azimuths = [0]
zoff = 0.5
flip = False
os.makedirs(args.save_root, exist_ok=True)
train_ratio = 0.9
sample = 100
resolution = '256x256'
# load the Blender procedural generator
OBJECTS_PATH = Path("./core/assets/")
assert OBJECTS_PATH.exists(), OBJECTS_PATH
generator = None
for subdir in sorted(list(OBJECTS_PATH.iterdir())):
clsname = subdir.name.split(".")[0].strip()
with gin.unlock_config():
module = importlib.import_module(f"core.assets.{clsname}")
if hasattr(module, args.generator):
generator = getattr(module, args.generator)
logger.info(f"Found {args.generator} in {subdir}")
break
logger.debug(f"{args.generator} not found in {subdir}")
if generator is None:
raise ModuleNotFoundError(f"{args.generator} not Found.")
gen = generator(args.seed)
# save params dict file
params_dict_file = f"{args.save_root}/params_dict.txt"
json.dump(gen.params_dict, open(params_dict_file, "w"))
# generate data main loop
for i in range(args.total_num):
# sample parameters
params = randomize_params(gen.params_dict)
# fix dependent parameters
params_fix_unused = gen.fix_unused_params(params)
save_name = f"{i:05d}"
save_dir = f"{args.save_root}/{save_name}"
os.makedirs(save_dir, exist_ok=True)
# generate and save rendering - for training data, skip the blend file to save storage
if i < args.total_num * train_ratio:
save_blend = False
else:
save_blend = True
asset, img_path = generate(gen, params_fix_unused, args.seed, save_dir=save_dir, save_name=save_name,
save_blend=save_blend, save_img=True, cam_dists=cam_dists,
cam_elevations=elevations, cam_azimuths=azimuths, zoff=zoff, sample=sample, resolution=resolution)
# save the parameters
json.dump(params_fix_unused, open(f"{save_dir}/params.txt", "w"), default=str)
if i % 100 == 0:
logger.info(f"{i} / {args.total_num} finished")
# write filelist
f = open(os.path.join(args.save_root, "train_list_mv.txt"), "w")
total_num = args.total_num
for i in range(int(total_num * train_ratio)):
for cam_dist in cam_dists:
for elevation in elevations:
for azimuth in azimuths:
f.write(
"{:05d}/{:05d}_{}_{}_{}.png\n".format(
i, i, cam_dist, elevation, azimuth
)
)
f.close()
f = open(os.path.join(args.save_root, "test_list_mv.txt"), "w")
for i in range(int(total_num * train_ratio), total_num):
for cam_dist in cam_dists:
for elevation in elevations:
for azimuth in azimuths:
f.write(
"{:05d}/{:05d}_{}_{}_{}.png\n".format(
i, i, cam_dist, elevation, azimuth
)
)
f.close()
# do the augmentation
# main loop
image_list = read_list_from_txt(os.path.join(args.save_root, "train_list_mv.txt"))
print("Augmenting...Total data: {}".format(len(image_list)))
p = Pool(16)
for i, name in enumerate(image_list):
p.apply_async(aug, args=(name, args.save_root, args.aug_num, flip, crop))
p.close()
p.join()
# write the new list
f = open(os.path.join(args.save_root, "train_list_mv_withaug.txt"), "w")
for i in range(int(total_num * train_ratio)):
for cam_dist in cam_dists:
for elevation in elevations:
for azimuth in azimuths:
f.write(
"{:05d}/{:05d}_{}_{}_{}.png\n".format(
i, i, cam_dist, elevation, azimuth
)
)
for j in range(args.aug_num):
f.write(
"{:05d}/{:05d}_{}_{}_{}_aug_{}.png\n".format(
i, i, cam_dist, elevation, azimuth, j
)
)
f.close()
# extract features
# Setup PyTorch:
torch.manual_seed(0)
torch.set_grad_enabled(False)
dinov2_model = Dinov2Model()
# read image paths
with open(os.path.join(args.save_root, "train_list_mv_withaug.txt"), "r") as f:
image_paths = f.readlines()
with open(os.path.join(args.save_root, "test_list_mv.txt"), "r") as f:
test_image_paths = f.readlines()
image_paths = image_paths + test_image_paths
image_paths = [os.path.join(args.save_root, path.strip()) for path in image_paths]
print(f"Number of images: {len(image_paths)}")
for i in range(0, len(image_paths), args.batch_size):
batch_paths = image_paths[i:i + args.batch_size]
# pre-process the image - RGBA to RGB with white background
batch_images = []
for path in batch_paths:
image = cv2.imread(path, -1)
mask = (image[...,-1:] > 0)
image_rgb = cv2.cvtColor(image[...,:3], cv2.COLOR_BGR2RGB)
# resize if not 256
if image.shape[0] != 256 or image.shape[1] != 256:
image_rgb = cv2.resize(image_rgb, (256, 256), interpolation=cv2.INTER_NEAREST)
mask = cv2.resize((255 * mask[:,:,0]).astype(np.uint8), (256, 256), interpolation=cv2.INTER_NEAREST)
mask = (mask > 128)[:,:,None]
# convert the transparent pixels to white background
image_whiteback = image_rgb * mask + 255 * (1 - mask)
batch_images.append(np.array(image_whiteback).astype(np.uint8))
batch_features = dinov2_model.encode_batch_imgs(batch_images, global_feat=False).detach().cpu().numpy()
save_paths = [p.replace(".png", "_dino_token.npz") for p in batch_paths]
# save the features
for save_path, feature in zip(save_paths, batch_features):
np.savez_compressed(save_path, feature)
print(f"Extracted features for {i} images.")
|