File size: 5,908 Bytes
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Sample new images from a pre-trained DiT.
"""
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

import argparse
import yaml
import json
import numpy as np
from pathlib import Path
import gin
import importlib
import logging
import cv2
import matplotlib.pyplot as plt


logging.basicConfig(
    format="[%(asctime)s.%(msecs)03d] [%(module)s] [%(levelname)s] | %(message)s",
    datefmt="%H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)

import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torch.utils.data import DataLoader

from core.diffusion import create_diffusion
from core.models import DiT_models
from core.dataset import ImageParamsDataset
from core.utils.train_utils import load_model
from core.utils.math_utils import unnormalize_params
from scripts.prepare_data import generate

def main(cfg, generator):
    # Setup PyTorch:
    torch.manual_seed(cfg["seed"])
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Load model:
    latent_size = cfg["num_params"]
    model = DiT_models[cfg["model"]](input_size=latent_size).to(device)
    # load a custom DiT checkpoint from train.py:
    state_dict = load_model(cfg["ckpt_path"])
    model.load_state_dict(state_dict)
    model.eval()  # important!
    diffusion = create_diffusion(str(cfg["num_sampling_steps"]))

    # Load dataset
    dataset = ImageParamsDataset(cfg["data_root"], cfg["test_file"], cfg["params_dict_file"])
    loader = DataLoader(
        dataset,
        batch_size=cfg["batch_size"],
        shuffle=False,
        num_workers=cfg["num_workers"],
        pin_memory=True,
        drop_last=False
    )
    params_dict = json.load(open(cfg["params_dict_file"]))
    idx = 0
    total_error = np.zeros(cfg["num_params"])
    for x, img_feat, img in loader:
        # sample from random noise, conditioned on image features
        img_feat = img_feat.to(device)
    
        model_kwargs = dict(y=img_feat)

        z = torch.randn(cfg["batch_size"], 1, latent_size, device=device)

        # Sample target params:
        samples = diffusion.p_sample_loop(
            model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
        )
        samples = samples.reshape(cfg["batch_size"], 1, -1)
        samples = samples.squeeze(1).cpu().numpy()
        x = x.squeeze(1).cpu().numpy()
        img = img.cpu().numpy()
        if cfg["run_generate"]:
            # save GT & sampled params & images
            for x_, params, img_ in zip(x, samples, img):
                # generate 3D using sampled params
                params_original = unnormalize_params(params, params_dict)
                save_dir = os.path.join(cfg["save_dir"], "{:05d}".format(idx))
                os.makedirs(save_dir, exist_ok=True)
                save_name = "sampled"
                asset, _ = generate(generator, params_original, seed=cfg["seed"], save_dir=save_dir, save_name=save_name,
                        save_blend=True, save_img=True, save_gif=False, save_mesh=True, 
                        cam_dists=cfg["r_cam_dists"], cam_elevations=cfg["r_cam_elevations"], cam_azimuths=cfg["r_cam_azimuths"], zoff=cfg["r_zoff"], 
                        resolution='256x256', sample=100)
                np.save(os.path.join(save_dir, "params.npy"), params_original)
                print("Generating model using sampled parameters. Saved in {}".format(save_dir))
                # also save GT image & GT params
                x_original = unnormalize_params(x_, params_dict)
                np.save(os.path.join(save_dir, "gt_params.npy"), x_original)
                cv2.imwrite(os.path.join(save_dir, "gt.png"), img_[:,:,::-1])
                idx += 1
        
        # calculate metrics for sampled params & GT params
        error = np.abs(x - samples)
        total_error += error
    
    # print the average error for each parameter
    avg_error = total_error / len(dataset)
    param_names = params_dict.keys()
    for param_name, error in zip(param_names, avg_error):
        print(f"{param_name}: {error:.4f}")
    # plot the error for each parameter
    fig, ax = plt.subplots()
    fig.set_size_inches(20, 15)
    ax.barh(param_names, avg_error)
    ax.set_xlabel("Average Error")
    ax.set_ylabel("Parameters")
    ax.set_title("Average Error for Each Parameter")
    plt.yticks(fontsize=10)
    fig.tight_layout()
    fig.savefig(os.path.join(cfg["save_dir"], "avg_error.png"))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True)
    args = parser.parse_args()
    with open(args.config) as f:
        cfg = yaml.load(f, Loader=yaml.FullLoader)
    
    # load the Blender procedural generator
    OBJECTS_PATH = Path(cfg["generator_root"])
    assert OBJECTS_PATH.exists(), OBJECTS_PATH
    generator = None
    for subdir in sorted(list(OBJECTS_PATH.iterdir())):
        clsname = subdir.name.split(".")[0].strip()
        with gin.unlock_config():
            module = importlib.import_module(f"core.assets.{clsname}")
        if hasattr(module, cfg["generator"]):
            generator = getattr(module, cfg["generator"])
            logger.info("Found {} in {}".format(cfg["generator"], subdir))
            break
        logger.debug("{} not found in {}".format(cfg["generator"], subdir))
    if generator is None:
        raise ModuleNotFoundError("{} not Found.".format(cfg["generator"]))
    gen = generator(cfg["seed"])
    # create visualize dir
    os.makedirs(cfg["save_dir"], exist_ok=True)
    main(cfg, gen)