File size: 30,757 Bytes
2c4c064
d711508
2c4c064
d584432
2c4c064
d711508
 
2c4c064
d711508
 
2c4c064
 
 
d711508
2c4c064
 
d711508
 
 
2c4c064
 
d711508
2c4c064
 
 
 
 
 
 
 
 
 
d711508
 
 
 
 
 
 
 
 
 
 
2c4c064
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c064
d711508
 
 
 
 
 
 
 
2c4c064
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c064
 
 
be61342
2c4c064
 
be61342
2c4c064
 
68f3a90
2c4c064
68f3a90
2c4c064
443c891
759f1a7
 
1822775
 
759f1a7
 
 
 
 
1822775
d711508
 
 
541a733
2c4c064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541a733
1507e63
 
a9ceb51
2c4c064
 
 
 
 
 
a9ceb51
39598c2
a9ceb51
2c4c064
 
 
 
 
 
a9ceb51
39598c2
 
d711508
2c4c064
d711508
 
 
2c4c064
d711508
 
 
2c4c064
d711508
 
 
2c4c064
d711508
 
 
 
 
2c4c064
d711508
 
 
2c4c064
d711508
 
 
 
 
 
2c4c064
d711508
 
2c4c064
d711508
 
 
 
2c4c064
d711508
2c4c064
 
 
d711508
2c4c064
 
 
 
 
d711508
2c4c064
 
 
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c064
 
 
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ceb51
2c4c064
 
 
 
 
 
 
 
 
 
 
 
 
a9ceb51
2c4c064
 
 
 
a9ceb51
2c4c064
 
 
 
 
 
 
 
 
112b465
d711508
2c4c064
 
 
 
 
d711508
2c4c064
 
 
d711508
2c4c064
d711508
 
2c4c064
 
d711508
 
a9ceb51
2d84a5c
d711508
 
 
206b0cc
2c4c064
d711508
 
 
 
2c4c064
d711508
2c4c064
 
 
d711508
2c4c064
 
 
 
 
 
 
 
 
 
d711508
2c4c064
 
d711508
 
 
2c4c064
 
 
d711508
2c4c064
 
 
 
d711508
 
 
 
 
 
2c4c064
d711508
 
2c4c064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ceb51
 
 
2c4c064
d711508
 
 
2c4c064
 
 
d711508
 
a9ceb51
d711508
 
2c4c064
d711508
2c4c064
d711508
 
 
2c4c064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d711508
2c4c064
 
 
 
 
 
 
 
 
d711508
2c4c064
d711508
2c4c064
d711508
 
2c4c064
d711508
 
2c4c064
 
d711508
2c4c064
d711508
2c4c064
d711508
 
 
2c4c064
 
 
 
d711508
2c4c064
 
 
 
 
 
 
d711508
 
 
 
 
2c4c064
 
d711508
 
 
2c4c064
a9ceb51
7bffd64
2c4c064
d711508
 
2c4c064
d711508
2c4c064
d711508
2c4c064
 
 
d711508
 
2c4c064
d711508
2c4c064
d711508
2c4c064
d711508
 
 
2c4c064
 
 
 
d711508
2c4c064
 
 
 
 
 
 
d711508
 
 
 
 
7bffd64
2c4c064
d711508
 
2c4c064
d711508
2c4c064
d711508
2c4c064
 
 
d711508
 
2c4c064
 
 
d711508
2c4c064
d711508
2c4c064
d711508
 
 
2c4c064
 
 
 
d711508
2c4c064
 
 
 
 
 
 
d711508
2c4c064
d711508
 
 
7bffd64
 
 
2c4c064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ceb51
 
 
 
 
 
 
 
 
2c4c064
 
 
a9ceb51
 
 
 
2c4c064
a9ceb51
 
 
 
112b465
a9ceb51
 
 
2c4c064
 
 
 
 
 
a9ceb51
2c4c064
 
 
 
 
 
a9ceb51
 
2c4c064
 
 
 
 
 
a9ceb51
2c4c064
 
 
 
 
 
 
a9ceb51
 
 
 
2c4c064
a9ceb51
2c4c064
a9ceb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c064
a9ceb51
2c4c064
 
a9ceb51
 
2c4c064
a9ceb51
2c4c064
a9ceb51
f9cca8d
 
a9ceb51
f9cca8d
 
 
2c4c064
a9ceb51
 
 
2c4c064
 
 
 
 
d711508
a9ceb51
d711508
2c4c064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d711508
759f1a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import json
import os
import uuid

import cv2
import gradio as gr
import numpy as np
import spaces
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPTextModel, CLIPTokenizer

from modules.unet import UNet3DConditionFlowModel
from pipelines.pipeline_imagecoductor import ImageConductorPipeline
from utils.gradio_utils import ensure_dirname, image2pil, split_filename, visualize_drag
from utils.lora_utils import add_LoRA_to_controlnet
from utils.utils import (
    bivariate_Gaussian,
    create_flow_controlnet,
    create_image_controlnet,
    interpolate_trajectory,
    load_model,
    load_weights,
)
from utils.visualizer import vis_flow_to_video

#### Description ####
title = r"""<h1 align="center">CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</h1>"""

head = r"""
<div style="text-align: center;">
                        <h1>Image Conductor: Precision Control for Interactive Video Synthesis</h1>
                        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                            <a href=""></a>
                            <a href='https://liyaowei-stu.github.io/project/ImageConductor/'><img src='https://img.shields.io/badge/Project_Page-ImgaeConductor-green' alt='Project Page'></a>
                            <a href='https://arxiv.org/pdf/2406.15339'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
                            <a href='https://github.com/liyaowei-stu/ImageConductor'><img src='https://img.shields.io/badge/Code-Github-orange'></a>


                        </div>
                        </br>
</div>
"""


descriptions = r"""
Official Gradio Demo for <a href='https://github.com/liyaowei-stu/ImageConductor'><b>Image Conductor: Precision Control for Interactive Video Synthesis</b></a>.<br>
πŸ§™Image Conductor enables precise, fine-grained control for generating motion-controllable videos from images, advancing the practical application of interactive video synthesis.<br>
"""


instructions = r"""
            - ⭐️ <b>step1: </b>Upload or select one image from Example.
            - ⭐️ <b>step2: </b>Click 'Add Drag' to draw some drags.
            - ⭐️ <b>step3: </b>Input text prompt  that complements the image (Necessary).
            - ⭐️ <b>step4: </b>Select 'Drag Mode' to specify the control of camera transition or object movement.
            - ⭐️ <b>step5: </b>Click 'Run' button to generate video assets.
            - ⭐️ <b>others: </b>Click 'Delete last drag' to delete the whole lastest path. Click 'Delete last step' to delete the lastest clicked control point.
            """

citation = r"""
If Image Conductor is helpful, please help to ⭐ the <a href='https://github.com/liyaowei-stu/ImageConductor' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/liyaowei-stu%2FImageConductor)](https://github.com/liyaowei-stu/ImageConductor)
---

πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{li2024imageconductor,
    title={Image Conductor: Precision Control for Interactive Video Synthesis},
    author={Li, Yaowei and Wang, Xintao and Zhang, Zhaoyang and Wang, Zhouxia and Yuan, Ziyang and Xie, Liangbin and Zou, Yuexian and Shan, Ying},
    year={2024},
    eprint={2406.15339},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.

# """

flow_controlnet_path = hf_hub_download("TencentARC/ImageConductor", "flow_controlnet.ckpt")
image_controlnet_path = hf_hub_download("TencentARC/ImageConductor", "image_controlnet.ckpt")
unet_path = hf_hub_download("TencentARC/ImageConductor", "unet.ckpt")

helloobjects_path = hf_hub_download("TencentARC/ImageConductor", "helloobjects_V12c.safetensors")
tusun_path = hf_hub_download("TencentARC/ImageConductor", "TUSUN.safetensors")

os.makedirs("models/sd1-5", exist_ok=True)
sd15_config_path = hf_hub_download("runwayml/stable-diffusion-v1-5", "config.json", subfolder="unet")
if not os.path.exists("models/sd1-5/config.json"):
    os.symlink(sd15_config_path, "models/sd1-5/config.json")
if not os.path.exists("models/sd1-5/unet.ckpt"):
    os.symlink(unet_path, "models/sd1-5/unet.ckpt")

# mv1 = os.system(f'mv /usr/local/lib/python3.10/site-packages/gradio/helpers.py /usr/local/lib/python3.10/site-packages/gradio/helpers_bkp.py')
# mv2 = os.system(f'mv helpers.py /usr/local/lib/python3.10/site-packages/gradio/helpers.py')


# # ζ£€ζŸ₯ε‘½δ»€ζ˜―ε¦ζˆεŠŸ
# if mv1 == 0 and mv2 == 0:
#     print("file move success!")
# else:
#     print("file move failed!")


# - - - - - examples  - - - - -  #

image_examples = [
    [
        "__asset__/images/object/turtle-1.jpg",
        "a sea turtle gracefully swimming over a coral reef in the clear blue ocean.",
        "object",
        11318446767408804497,
        "",
        "turtle",
        "__asset__/turtle.mp4",
    ],
    [
        "__asset__/images/object/rose-1.jpg",
        "a red rose engulfed in flames.",
        "object",
        6854275249656120509,
        "",
        "rose",
        "__asset__/rose.mp4",
    ],
    [
        "__asset__/images/object/jellyfish-1.jpg",
        "intricate detailing,photorealism,hyperrealistic, glowing jellyfish mushroom, flying, starry sky, bokeh, golden ratio composition.",
        "object",
        17966188172968903484,
        "HelloObject",
        "jellyfish",
        "__asset__/jellyfish.mp4",
    ],
    [
        "__asset__/images/camera/lush-1.jpg",
        "detailed craftsmanship, photorealism, hyperrealistic, roaring waterfall, misty spray, lush greenery, vibrant rainbow, golden ratio composition.",
        "camera",
        7970487946960948963,
        "HelloObject",
        "lush",
        "__asset__/lush.mp4",
    ],
    [
        "__asset__/images/camera/tusun-1.jpg",
        "tusuncub with its mouth open, blurry, open mouth, fangs, photo background, looking at viewer, tongue, full body, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing.",
        "camera",
        996953226890228361,
        "TUSUN",
        "tusun",
        "__asset__/tusun.mp4",
    ],
    [
        "__asset__/images/camera/painting-1.jpg",
        "A oil painting.",
        "camera",
        16867854766769816385,
        "",
        "painting",
        "__asset__/painting.mp4",
    ],
]


POINTS = {
    "turtle": "__asset__/trajs/object/turtle-1.json",
    "rose": "__asset__/trajs/object/rose-1.json",
    "jellyfish": "__asset__/trajs/object/jellyfish-1.json",
    "lush": "__asset__/trajs/camera/lush-1.json",
    "tusun": "__asset__/trajs/camera/tusun-1.json",
    "painting": "__asset__/trajs/camera/painting-1.json",
}

IMAGE_PATH = {
    "turtle": "__asset__/images/object/turtle-1.jpg",
    "rose": "__asset__/images/object/rose-1.jpg",
    "jellyfish": "__asset__/images/object/jellyfish-1.jpg",
    "lush": "__asset__/images/camera/lush-1.jpg",
    "tusun": "__asset__/images/camera/tusun-1.jpg",
    "painting": "__asset__/images/camera/painting-1.jpg",
}


DREAM_BOOTH = {
    "HelloObject": helloobjects_path,
}

LORA = {
    "TUSUN": tusun_path,
}

LORA_ALPHA = {
    "TUSUN": 0.6,
}

NPROMPT = {
    "HelloObject": "FastNegativeV2,(bad-artist:1),(worst quality, low quality:1.4),(bad_prompt_version2:0.8),bad-hands-5,lowres,bad anatomy,bad hands,((text)),(watermark),error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,((username)),blurry,(extra limbs),bad-artist-anime,badhandv4,EasyNegative,ng_deepnegative_v1_75t,verybadimagenegative_v1.3,BadDream,(three hands:1.6),(three legs:1.2),(more than two hands:1.4),(more than two legs,:1.2)"
}

output_dir = "outputs"
ensure_dirname(output_dir)


def points_to_flows(track_points, model_length, height, width):
    input_drag = np.zeros((model_length - 1, height, width, 2))
    for splited_track in track_points:
        if len(splited_track) == 1:  # stationary point
            displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
            splited_track = tuple([splited_track[0], displacement_point])
        # interpolate the track
        splited_track = interpolate_trajectory(splited_track, model_length)
        splited_track = splited_track[:model_length]
        if len(splited_track) < model_length:
            splited_track = splited_track + [splited_track[-1]] * (model_length - len(splited_track))
        for i in range(model_length - 1):
            start_point = splited_track[i]
            end_point = splited_track[i + 1]
            input_drag[i][int(start_point[1])][int(start_point[0])][0] = end_point[0] - start_point[0]
            input_drag[i][int(start_point[1])][int(start_point[0])][1] = end_point[1] - start_point[1]
    return input_drag


class ImageConductor:
    def __init__(
        self, device, unet_path, image_controlnet_path, flow_controlnet_path, height, width, model_length, lora_rank=64
    ):
        self.device = device
        tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
        text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder").to(
            device
        )
        vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device)
        inference_config = OmegaConf.load("configs/inference/inference.yaml")
        unet = UNet3DConditionFlowModel.from_pretrained_2d(
            "models/sd1-5/", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)
        )

        self.vae = vae

        ### >>> Initialize UNet module >>> ###
        load_model(unet, unet_path)

        ### >>> Initialize image controlnet module >>> ###
        image_controlnet = create_image_controlnet("configs/inference/image_condition.yaml", unet)
        load_model(image_controlnet, image_controlnet_path)
        ### >>> Initialize flow controlnet module >>> ###
        flow_controlnet = create_flow_controlnet("configs/inference/flow_condition.yaml", unet)
        add_LoRA_to_controlnet(lora_rank, flow_controlnet)
        load_model(flow_controlnet, flow_controlnet_path)

        unet.eval().to(device)
        image_controlnet.eval().to(device)
        flow_controlnet.eval().to(device)

        self.pipeline = ImageConductorPipeline(
            unet=unet,
            vae=vae,
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
            image_controlnet=image_controlnet,
            flow_controlnet=flow_controlnet,
        ).to(device)

        self.height = height
        self.width = width
        # _, model_step, _ = split_filename(model_path)
        # self.ouput_prefix = f'{model_step}_{width}X{height}'
        self.model_length = model_length

        blur_kernel = bivariate_Gaussian(kernel_size=99, sig_x=10, sig_y=10, theta=0, grid=None, isotropic=True)

        self.blur_kernel = blur_kernel

    @spaces.GPU(duration=180)
    def run(
        self,
        first_frame_path,
        tracking_points,
        prompt,
        drag_mode,
        negative_prompt,
        seed,
        randomize_seed,
        guidance_scale,
        num_inference_steps,
        personalized,
    ):
        print("Run!")

        original_width, original_height = 384, 256
        input_all_points = tracking_points

        print("input_all_points", input_all_points)
        resized_all_points = [
            tuple(
                [
                    tuple([float(e1[0] * self.width / original_width), float(e1[1] * self.height / original_height)])
                    for e1 in e
                ]
            )
            for e in input_all_points
        ]

        dir, base, ext = split_filename(first_frame_path)
        id = base.split("_")[-1]

        visualized_drag, _ = visualize_drag(
            first_frame_path, resized_all_points, drag_mode, self.width, self.height, self.model_length
        )

        ## image condition
        image_transforms = transforms.Compose(
            [
                transforms.RandomResizedCrop(
                    (self.height, self.width), (1.0, 1.0), ratio=(self.width / self.height, self.width / self.height)
                ),
                transforms.ToTensor(),
            ]
        )

        image_paths = [first_frame_path]
        controlnet_images = [(image_transforms(Image.open(path).convert("RGB"))) for path in image_paths]
        controlnet_images = torch.stack(controlnet_images).unsqueeze(0).to(device)
        controlnet_images = rearrange(controlnet_images, "b f c h w -> b c f h w")
        num_controlnet_images = controlnet_images.shape[2]
        controlnet_images = rearrange(controlnet_images, "b c f h w -> (b f) c h w")
        self.vae.to(device)
        controlnet_images = self.vae.encode(controlnet_images * 2.0 - 1.0).latent_dist.sample() * 0.18215
        controlnet_images = rearrange(controlnet_images, "(b f) c h w -> b c f h w", f=num_controlnet_images)

        # flow condition
        controlnet_flows = points_to_flows(resized_all_points, self.model_length, self.height, self.width)
        for i in range(0, self.model_length - 1):
            controlnet_flows[i] = cv2.filter2D(controlnet_flows[i], -1, self.blur_kernel)
        controlnet_flows = np.concatenate(
            [np.zeros_like(controlnet_flows[0])[np.newaxis, ...], controlnet_flows], axis=0
        )  # pad the first frame with zero flow
        os.makedirs(os.path.join(output_dir, "control_flows"), exist_ok=True)
        trajs_video = vis_flow_to_video(controlnet_flows, num_frames=self.model_length)  # T-1 x H x W x 3
        torchvision.io.write_video(
            f"{output_dir}/control_flows/sample-{id}-train_flow.mp4",
            trajs_video,
            fps=8,
            video_codec="h264",
            options={"crf": "10"},
        )
        controlnet_flows = torch.from_numpy(controlnet_flows)[None][:, : self.model_length, ...]
        controlnet_flows = rearrange(controlnet_flows, "b f h w c-> b c f h w").float().to(device)

        dreambooth_model_path = DREAM_BOOTH.get(personalized, "")
        lora_model_path = LORA.get(personalized, "")
        lora_alpha = LORA_ALPHA.get(personalized, 0.6)
        self.pipeline = load_weights(
            self.pipeline,
            dreambooth_model_path=dreambooth_model_path,
            lora_model_path=lora_model_path,
            lora_alpha=lora_alpha,
        ).to(device)

        if NPROMPT.get(personalized, "") != "":
            negative_prompt = NPROMPT.get(personalized)

        if randomize_seed:
            random_seed = torch.seed()
        else:
            seed = int(seed)
            random_seed = seed
        torch.manual_seed(random_seed)
        torch.cuda.manual_seed_all(random_seed)
        print(f"current seed: {torch.initial_seed()}")
        sample = self.pipeline(
            prompt,
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            width=self.width,
            height=self.height,
            video_length=self.model_length,
            controlnet_images=controlnet_images,  # 1 4 1 32 48
            controlnet_image_index=[0],
            controlnet_flows=controlnet_flows,  # [1, 2, 16, 256, 384]
            control_mode=drag_mode,
            eval_mode=True,
        ).videos

        outputs_path = os.path.join(output_dir, f"output_{i}_{id}.mp4")
        vis_video = (rearrange(sample[0], "c t h w -> t h w c") * 255.0).clip(0, 255)
        torchvision.io.write_video(outputs_path, vis_video, fps=8, video_codec="h264", options={"crf": "10"})

        # outputs_path = os.path.join(output_dir, f'output_{i}_{id}.gif')
        # save_videos_grid(sample[0][None], outputs_path)
        print("Done!")
        return visualized_drag, outputs_path


def reset_states(first_frame_path, tracking_points):
    first_frame_path = None
    tracking_points = []
    return {input_image: None, first_frame_path_var: first_frame_path, tracking_points_var: tracking_points}


def preprocess_image(image, tracking_points):
    image_pil = image2pil(image.name)
    raw_w, raw_h = image_pil.size
    resize_ratio = max(384 / raw_w, 256 / raw_h)
    image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
    image_pil = transforms.CenterCrop((256, 384))(image_pil.convert("RGB"))
    id = str(uuid.uuid4())[:4]
    first_frame_path = os.path.join(output_dir, f"first_frame_{id}.jpg")
    image_pil.save(first_frame_path, quality=95)
    tracking_points = []
    return {
        input_image: first_frame_path,
        first_frame_path_var: first_frame_path,
        tracking_points_var: tracking_points,
        personalized: "",
    }


def add_tracking_points(
    tracking_points, first_frame_path, drag_mode, evt: gr.SelectData
):  # SelectData is a subclass of EventData
    if drag_mode == "object":
        color = (255, 0, 0, 255)
    elif drag_mode == "camera":
        color = (0, 0, 255, 255)

    print(f"You selected {evt.value} at {evt.index} from {evt.target}")
    if not tracking_points:
        tracking_points = [[]]
    tracking_points[-1].append(evt.index)

    transparent_background = Image.open(first_frame_path).convert("RGBA")
    w, h = transparent_background.size
    transparent_layer = np.zeros((h, w, 4))

    for track in tracking_points:
        if len(track) > 1:
            for i in range(len(track) - 1):
                start_point = track[i]
                end_point = track[i + 1]
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(track) - 2:
                    cv2.arrowedLine(
                        transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
                    )
                else:
                    cv2.line(
                        transparent_layer,
                        tuple(start_point),
                        tuple(end_point),
                        color,
                        2,
                    )
        else:
            cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    return {tracking_points_var: tracking_points, input_image: trajectory_map}


def preprocess_example_image(image_path, tracking_points, drag_mode):
    image_pil = image2pil(image_path)
    raw_w, raw_h = image_pil.size
    resize_ratio = max(384 / raw_w, 256 / raw_h)
    image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
    image_pil = transforms.CenterCrop((256, 384))(image_pil.convert("RGB"))
    id = str(uuid.uuid4())[:4]
    first_frame_path = os.path.join(output_dir, f"first_frame_{id}.jpg")
    image_pil.save(first_frame_path, quality=95)

    if drag_mode == "object":
        color = (255, 0, 0, 255)
    elif drag_mode == "camera":
        color = (0, 0, 255, 255)

    transparent_background = Image.open(first_frame_path).convert("RGBA")
    w, h = transparent_background.size
    transparent_layer = np.zeros((h, w, 4))

    for track in tracking_points:
        if len(track) > 1:
            for i in range(len(track) - 1):
                start_point = track[i]
                end_point = track[i + 1]
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(track) - 2:
                    cv2.arrowedLine(
                        transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
                    )
                else:
                    cv2.line(
                        transparent_layer,
                        tuple(start_point),
                        tuple(end_point),
                        color,
                        2,
                    )
        else:
            cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)

    return trajectory_map, first_frame_path


def add_drag(tracking_points):
    if not tracking_points or tracking_points[-1]:
        tracking_points.append([])
    return {tracking_points_var: tracking_points}


def delete_last_drag(tracking_points, first_frame_path, drag_mode):
    if drag_mode == "object":
        color = (255, 0, 0, 255)
    elif drag_mode == "camera":
        color = (0, 0, 255, 255)
    if tracking_points:
        tracking_points.pop()
    transparent_background = Image.open(first_frame_path).convert("RGBA")
    w, h = transparent_background.size
    transparent_layer = np.zeros((h, w, 4))
    for track in tracking_points:
        if len(track) > 1:
            for i in range(len(track) - 1):
                start_point = track[i]
                end_point = track[i + 1]
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(track) - 2:
                    cv2.arrowedLine(
                        transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
                    )
                else:
                    cv2.line(
                        transparent_layer,
                        tuple(start_point),
                        tuple(end_point),
                        color,
                        2,
                    )
        else:
            cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    return {tracking_points_var: tracking_points, input_image: trajectory_map}


def delete_last_step(tracking_points, first_frame_path, drag_mode):
    if drag_mode == "object":
        color = (255, 0, 0, 255)
    elif drag_mode == "camera":
        color = (0, 0, 255, 255)
    if tracking_points and tracking_points[-1]:
        tracking_points[-1].pop()
    transparent_background = Image.open(first_frame_path).convert("RGBA")
    w, h = transparent_background.size
    transparent_layer = np.zeros((h, w, 4))
    for track in tracking_points:
        if not track:
            continue
        if len(track) > 1:
            for i in range(len(track) - 1):
                start_point = track[i]
                end_point = track[i + 1]
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(track) - 2:
                    cv2.arrowedLine(
                        transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
                    )
                else:
                    cv2.line(
                        transparent_layer,
                        tuple(start_point),
                        tuple(end_point),
                        color,
                        2,
                    )
        else:
            cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    return {tracking_points_var: tracking_points, input_image: trajectory_map}


def load_example(drag_mode, examples_type):
    example_image_path = IMAGE_PATH[examples_type]
    with open(POINTS[examples_type]) as f:
        tracking_points = json.load(f)
    tracking_points = np.round(tracking_points).astype(int).tolist()
    trajectory_map, first_frame_path = preprocess_example_image(example_image_path, tracking_points, drag_mode)
    return {input_image: trajectory_map, first_frame_path_var: first_frame_path, tracking_points_var: tracking_points}


device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
ImageConductor_net = ImageConductor(
    device=device,
    unet_path=unet_path,
    image_controlnet_path=image_controlnet_path,
    flow_controlnet_path=flow_controlnet_path,
    height=256,
    width=384,
    model_length=16,
)

block = gr.Blocks(theme=gr.themes.Soft(radius_size=gr.themes.sizes.radius_none, text_size=gr.themes.sizes.text_md))
with block:
    with gr.Row():
        with gr.Column():
            gr.HTML(head)

    gr.Markdown(descriptions)

    with gr.Accordion(label="πŸ› οΈ Instructions:", open=True, elem_id="accordion"):
        with gr.Row(equal_height=True):
            gr.Markdown(instructions)

    first_frame_path_var = gr.State()
    tracking_points_var = gr.State([])

    with gr.Row():
        with gr.Column(scale=1):
            image_upload_button = gr.UploadButton(label="Upload Image", file_types=["image"])
            add_drag_button = gr.Button(value="Add Drag")
            reset_button = gr.Button(value="Reset")
            delete_last_drag_button = gr.Button(value="Delete last drag")
            delete_last_step_button = gr.Button(value="Delete last step")

        with gr.Column(scale=7):
            with gr.Row():
                with gr.Column(scale=6):
                    input_image = gr.Image(
                        label="Input Image",
                        interactive=True,
                        height=300,
                        width=384,
                    )
                with gr.Column(scale=6):
                    output_image = gr.Image(
                        label="Motion Path",
                        interactive=False,
                        height=256,
                        width=384,
                    )
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(
                value="a wonderful elf.",
                label="Prompt (highly-recommended)",
                interactive=True,
                visible=True,
            )
            negative_prompt = gr.Text(
                label="Negative Prompt",
                max_lines=5,
                placeholder="Please input your negative prompt",
                value="worst quality, low quality, letterboxed",
                lines=1,
            )
            drag_mode = gr.Radio(["camera", "object"], label="Drag mode: ", value="object", scale=2)
            run_button = gr.Button(value="Run")

            with gr.Accordion("More input params", open=False, elem_id="accordion1"):
                with gr.Group():
                    seed = gr.Textbox(label="Seed: ", value=561793204)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

                with gr.Group():
                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=1,
                            maximum=12,
                            step=0.1,
                            value=8.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=25,
                        )

                with gr.Group():
                    personalized = gr.Dropdown(label="Personalized", choices=["", "HelloObject", "TUSUN"], value="")
                    examples_type = gr.Textbox(label="Examples Type (Ignore) ", value="", visible=False)

        with gr.Column(scale=7):
            output_video = gr.Video(label="Output Video", width=384, height=256)

    with gr.Row():
        example = gr.Examples(
            label="Input Example",
            examples=image_examples,
            inputs=[input_image, prompt, drag_mode, seed, personalized, examples_type, output_video],
            examples_per_page=10,
            cache_examples=False,
        )

    with gr.Row():
        gr.Markdown(citation)

    image_upload_button.upload(
        preprocess_image,
        [image_upload_button, tracking_points_var],
        [input_image, first_frame_path_var, tracking_points_var, personalized],
    )

    add_drag_button.click(add_drag, tracking_points_var, tracking_points_var)

    delete_last_drag_button.click(
        delete_last_drag,
        [tracking_points_var, first_frame_path_var, drag_mode],
        [tracking_points_var, input_image],
    )

    delete_last_step_button.click(
        delete_last_step,
        [tracking_points_var, first_frame_path_var, drag_mode],
        [tracking_points_var, input_image],
    )

    reset_button.click(
        reset_states,
        [first_frame_path_var, tracking_points_var],
        [input_image, first_frame_path_var, tracking_points_var],
    )

    input_image.select(
        add_tracking_points,
        [tracking_points_var, first_frame_path_var, drag_mode],
        [tracking_points_var, input_image],
    )

    run_button.click(
        ImageConductor_net.run,
        [
            first_frame_path_var,
            tracking_points_var,
            prompt,
            drag_mode,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            personalized,
        ],
        [output_image, output_video],
    )

    examples_type.change(
        fn=load_example,
        inputs=[drag_mode, examples_type],
        outputs=[input_image, first_frame_path_var, tracking_points_var],
        api_name=False,
        queue=False,
    )

block.queue().launch()