Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,815 Bytes
d711508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import torch
from transformers.pytorch_utils import Conv1D
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.lora import LoraConfig, LoraModel
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import (
TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING,
_freeze_adapter,
_get_submodules,
get_auto_gptq_quant_linear,
get_quantization_config,
)
from peft.utils.integrations import gather_params_ctx
from .gptq import SVDQuantLinear
from .layer import AdaLoraLayer, RankAllocator, SVDLinear
class AdaLoraModel(LoraModel):
"""
Creates AdaLoRA (Adaptive LoRA) model from a pretrained transformers model. Paper:
https://openreview.net/forum?id=lq62uWRJjiY
Args:
model ([`transformers.PreTrainedModel`]): The model to be adapted.
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
`torch.nn.Module`: The AdaLora model.
Example::
>>> from transformers import AutoModelForSeq2SeqLM, LoraConfig >>> from peft import AdaLoraModel, AdaLoraConfig
>>> config = AdaLoraConfig(
peft_type="ADALORA", task_type="SEQ_2_SEQ_LM", r=8, lora_alpha=32, target_modules=["q", "v"],
lora_dropout=0.01,
)
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AdaLoraModel(model, config, "default")
**Attributes**:
- **model** ([`transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`AdaLoraConfig`]): The configuration of the AdaLora model.
"""
# Note: don't redefine prefix here, it should be inherited from LoraModel
def __init__(self, model, config, adapter_name):
super().__init__(model, config, adapter_name)
traininable_mode_counter = 0
for config in self.peft_config.values():
if not config.inference_mode:
traininable_mode_counter += 1
if traininable_mode_counter > 1:
raise ValueError(
"AdaLoraModel supports only 1 trainable adapter. "
"When using multiple adapters, set inference_mode to True for all adapters except the one you want to train."
)
if self.peft_config[adapter_name].inference_mode:
_freeze_adapter(self.model, adapter_name)
else:
self.trainable_adapter_name = adapter_name
self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name)
def _check_new_adapter_config(self, config: LoraConfig) -> None:
"""
A helper method to check the config when a new adapter is being added.
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
"""
super()._check_new_adapter_config(config)
traininable_mode_counter = 0
for config_ in self.peft_config.values():
if not config_.inference_mode:
traininable_mode_counter += 1
if traininable_mode_counter > 1:
raise ValueError(
f"{self.__class__.__name__} supports only 1 trainable adapter. "
"When using multiple adapters, set inference_mode to True for all adapters except the one "
"you want to train."
)
def _create_and_replace(
self,
lora_config,
adapter_name,
target,
target_name,
parent,
current_key,
):
kwargs = {
"r": lora_config.init_r,
"lora_alpha": lora_config.lora_alpha,
"lora_dropout": lora_config.lora_dropout,
"fan_in_fan_out": lora_config.fan_in_fan_out,
"init_lora_weights": lora_config.init_lora_weights,
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
}
if (kwargs["loaded_in_8bit"] or kwargs["loaded_in_4bit"]) and not is_bnb_available():
raise ImportError(
"To use AdaLora with 8-bit quantization, please install the `bitsandbytes` package. "
"You can install it with `pip install bitsandbytes`."
)
quantization_config = get_quantization_config(self.model, method="gptq")
if quantization_config is not None:
kwargs["gptq_quantization_config"] = quantization_config
# If it is not an AdaLoraLayer, create a new module, else update it with new adapters
if not isinstance(target, AdaLoraLayer):
new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
else:
target.update_layer(
adapter_name,
lora_config.init_r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
@staticmethod
def _create_new_module(lora_config, adapter_name, target, **kwargs):
# avoid eager bnb import
if is_bnb_available():
import bitsandbytes as bnb
from .bnb import SVDLinear8bitLt
if is_bnb_4bit_available():
from .bnb import SVDLinear4bit
gptq_quantization_config = kwargs.get("gptq_quantization_config", None)
AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config)
loaded_in_8bit = kwargs.pop("loaded_in_8bit", False)
loaded_in_4bit = kwargs.pop("loaded_in_4bit", False)
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
kwargs.update(
{
"has_fp16_weights": target_base_layer.state.has_fp16_weights,
"memory_efficient_backward": target_base_layer.state.memory_efficient_backward,
"threshold": target_base_layer.state.threshold,
"index": target_base_layer.index,
}
)
new_module = SVDLinear8bitLt(target, adapter_name, **kwargs)
elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
fourbit_kwargs = kwargs.copy()
fourbit_kwargs.update(
{
"compute_dtype": target_base_layer.compute_dtype,
"compress_statistics": target_base_layer.weight.compress_statistics,
"quant_type": target_base_layer.weight.quant_type,
}
)
new_module = SVDLinear4bit(target, adapter_name, **fourbit_kwargs)
elif AutoGPTQQuantLinear is not None and isinstance(target, AutoGPTQQuantLinear):
new_module = SVDQuantLinear(target, adapter_name, **kwargs)
else:
if isinstance(target_base_layer, torch.nn.Linear):
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
elif isinstance(target_base_layer, Conv1D):
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear` and `Conv1D` are supported."
)
new_module = SVDLinear(target, adapter_name, **kwargs)
return new_module
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[
model_config["model_type"]
]
return peft_config
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
return getattr(self.model, name)
def forward(self, *args, **kwargs):
outputs = self.model.forward(*args, **kwargs)
if (getattr(outputs, "loss", None) is not None) and isinstance(outputs.loss, torch.Tensor):
# Calculate the orthogonal regularization
orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight
if orth_reg_weight <= 0:
raise ValueError("orth_reg_weight should be greater than 0. ")
regu_loss = 0
num_param = 0
for n, p in self.model.named_parameters():
if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n:
if p.shape == torch.Size([0]):
with gather_params_ctx(p, fwd_module=self):
para_cov = p @ p.T if "lora_A" in n else p.T @ p
else:
para_cov = p @ p.T if "lora_A" in n else p.T @ p
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) # noqa: E741
I.requires_grad = False
num_param += 1
regu_loss += torch.norm(para_cov - I, p="fro")
if num_param > 0:
regu_loss = regu_loss / num_param
else:
regu_loss = 0
outputs.loss += orth_reg_weight * regu_loss
return outputs
def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name):
lora_config = self.peft_config[adapter_name]
for name, rank_idx in rank_pattern.items():
if isinstance(rank_idx, list):
rank = sum(rank_idx)
elif isinstance(rank_idx, torch.Tensor):
rank_idx = rank_idx.view(-1)
rank = rank_idx.sum().item()
else:
raise ValueError("Unexpected type of rank_idx")
key = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
_, target, _ = _get_submodules(self.model, key)
lora_E_weights = target.lora_E[adapter_name][rank_idx]
lora_A_weights = target.lora_A[adapter_name][rank_idx]
lora_B_weights = target.lora_B[adapter_name][:, rank_idx]
ranknum = target.ranknum[adapter_name]
target.update_layer(
adapter_name,
rank,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
with torch.no_grad():
if rank > 0:
target.lora_E[adapter_name].copy_(lora_E_weights)
target.lora_A[adapter_name].copy_(lora_A_weights)
target.lora_B[adapter_name].copy_(lora_B_weights)
# The scaling is exactly as the previous
target.ranknum[adapter_name].copy_(ranknum)
def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name):
for name, rank_idx in rank_pattern.items():
rank = sum(rank_idx)
prefix = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
for layer in ["lora_E", "lora_A", "lora_B"]:
key = f"base_model.model.{prefix}.{layer}.{adapter_name}"
if layer != "lora_B":
state_dict[key] = (
state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key]
)
else:
state_dict[key] = (
state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key]
)
return state_dict
def update_and_allocate(self, global_step):
"""
This method updates Adalora budget and mask.
This should be called in every training step after `loss.backward()` and before `zero_grad()`.
`tinit`, `tfinal` and `deltaT` are handled with in the method.
Args:
global_step (`int`): The current training step, it is used to calculate adalora budget.
Example:
```python
>>> loss = model(**input).loss
>>> loss.backward()
>>> optimizer.step()
>>> model.base_model.update_and_allocate(i_step)
>>> optimizer.zero_grad()
```
"""
lora_config = self.peft_config[self.trainable_adapter_name]
# Update the importance score and allocate the budget
if global_step < lora_config.total_step - lora_config.tfinal:
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step)
if rank_pattern:
lora_config.rank_pattern = rank_pattern
# Finalize the budget allocation
elif global_step == lora_config.total_step - lora_config.tfinal:
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True)
# for some reason, this freezes the trainable parameters and nothing gets updates
# self.resize_modules_by_rank_pattern(rank_pattern, self.trainable_adapter_name)
lora_config.rank_pattern = rank_pattern
self.rankallocator.reset_ipt()
# Currently using inefficient way to mask the unimportant weights using the rank pattern
# due to problem mentioned above
elif global_step > lora_config.total_step - lora_config.tfinal:
self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern)
# Pass the function and do forward propagation
else:
return None
def add_weighted_adapter(self, *args, **kwargs):
"""This method is not supported for AdaLoRA, use LoRA instead."""
raise TypeError(f"{self.__class__.__name__} does not support add_weighted_adapter method.")
|