Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from .layer import AdaLoraLayer | |
class SVDQuantLinear(torch.nn.Module, AdaLoraLayer): | |
def __init__( | |
self, | |
base_layer, | |
adapter_name, | |
r: int = 0, | |
lora_alpha: int = 1, | |
lora_dropout: float = 0.0, | |
init_lora_weights: bool = True, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
AdaLoraLayer.__init__(self, base_layer) | |
# self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter | |
# for backwards compatibility | |
self.quant_linear_module = base_layer | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
result = self.quant_linear_module(x) | |
if self.disable_adapters: | |
return result | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.lora_A.keys(): | |
continue | |
lora_A = self.lora_A[active_adapter] | |
lora_B = self.lora_B[active_adapter] | |
lora_E = self.lora_E[active_adapter] | |
dropout = self.lora_dropout[active_adapter] | |
scaling = self.scaling[active_adapter] | |
ranknum = self.ranknum[active_adapter] + 1e-5 | |
requires_conversion = not torch.is_autocast_enabled() | |
if requires_conversion: | |
expected_dtype = result.dtype | |
if x.dtype != torch.float32: | |
x = x.float() | |
output = (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum | |
# TODO: here, the dtype conversion is applied on the *whole expression*, | |
# not the intermediate result, unlike for SVDLinear8bitLT and | |
# SVDLinear4bit, is that correct? | |
if requires_conversion: | |
output = output.to(expected_dtype) | |
result += output | |
return result | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "adalora." + rep | |