Yw22's picture
init demo
d711508
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from .layer import IA3Layer
if is_bnb_available():
class Linear8bitLt(torch.nn.Module, IA3Layer):
# (IA)^3 implemented in a dense layer
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
is_feedforward: bool,
init_ia3_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward)
# Freezing the pre-trained weight matrix
self.get_base_layer().weight.requires_grad = False
self._active_adapter = adapter_name
self.update_layer(adapter_name, init_ia3_weights)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
# note: no check for self.merged because merging is not supported (yet)
if self.disable_adapters:
return self.base_layer(x)
ia3_scaling = 1
for active_adapter in self.active_adapters:
if active_adapter not in self.ia3_l.keys():
continue
ia3_scaling *= self.ia3_l[active_adapter].flatten()
requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32)
if requires_conversion:
x = x.float()
if self.is_feedforward:
result = self.base_layer(x * ia3_scaling)
expected_dtype = result.dtype
else:
result = self.base_layer(x)
expected_dtype = result.dtype
result = result * ia3_scaling
if requires_conversion:
result = result.to(expected_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "ia3." + rep
if is_bnb_4bit_available():
class Linear4bit(torch.nn.Module, IA3Layer):
# IA3 implemented in a dense layer
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
is_feedforward: bool,
init_ia3_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward)
# Freezing the pre-trained weight matrix
self.get_base_layer().weight.requires_grad = False
self._active_adapter = adapter_name
self.update_layer(adapter_name, init_ia3_weights)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
# note: no check for self.merged because merging is not supported (yet)
if self.disable_adapters:
return self.base_layer(x)
ia3_scaling = 1
for active_adapter in self.active_adapters:
if active_adapter not in self.ia3_l.keys():
continue
ia3_scaling *= self.ia3_l[active_adapter].flatten()
requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32)
if requires_conversion:
x = x.float()
if self.is_feedforward:
result = self.base_layer(x * ia3_scaling)
expected_dtype = result.dtype
else:
result = self.base_layer(x)
expected_dtype = result.dtype
result = result * ia3_scaling
result = result.clone()
# adalora.py and lora.py both suggest that this is necessary for 4-bit training on older versions of Pytorch.
# This has been duplicated here.
if requires_conversion:
result = result.to(expected_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "ia3." + rep