Yw22's picture
init demo
d711508
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import warnings
from typing import Optional
from torch import nn
from torch.nn.modules import Module
from tqdm import tqdm
from peft.config import PeftConfig
from peft.tuners.tuners_utils import BaseTuner, _get_submodules, check_target_module_exists
from peft.utils import TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING, ModulesToSaveWrapper
from .layer import LNTuningLayer
class LNTuningModel(BaseTuner):
"""
Creates LayerNorm tuning from a pretrained transformer model.
The method is described in detail in https://arxiv.org/abs/2312.11420.
Args:
model ([`torch.nn.Module`]): The model to be adapted.
config ([`LNTuningConfig`]): The configuration of the Lora model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
'torch.nn.Module': The adapted model with LayerNorm tuned on.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import get_peft_model, TaskType, LNTuningConfig
>>> peft_config = LNTuningConfig(
... task_type=TaskType.CAUSAL_LM,
... )
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> model = get_peft_model(model, peft_config)
>>> model.print_trainable_parameters()
```
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`LNTuningConfig`]): The configuration of the Lora model.
"""
prefix: str = "ln_tuning_"
def __init__(self, model, config, adapter_name) -> None:
# self.adapter_name = adapter_name
super().__init__(model, config, adapter_name)
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
return getattr(self.model, name)
# TODO: here need to handle the modules_to_save rather than the target_modules
@staticmethod
def _prepare_adapter_config(peft_config: PeftConfig, model_config: dict) -> PeftConfig:
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _create_and_replace(
self,
peft_config: PeftConfig,
adapter_name: str,
target: Module,
target_name: str,
parent: Module,
current_key: str,
) -> None:
# replace the original module with a same new module
new_module = self._create_new_module(peft_config, target, adapter_name)
if adapter_name != self.active_adapter:
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
def _create_new_module(
self,
peft_config: PeftConfig,
target: Module,
adapter_name: str,
) -> Module:
if not isinstance(target, LNTuningLayer):
new_module = LNTuningLayer(target, adapter_name)
else:
new_module = target
new_module.update_layer(target.base_layer, adapter_name)
return new_module
def _replace_module(self, parent: Module, child_name: str, new_module: Module, child: Module) -> None:
setattr(parent, child_name, new_module)
if hasattr(child, "base_layer"):
child = child.base_layer
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
for name, module in new_module.named_modules():
weight = child.qweight if hasattr(child, "qweight") else child.weight
module.to(weight.device)
def _mark_only_adapters_as_trainable(self, model: Module):
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
else:
p.requires_grad = True
def _check_target_module_exists(self, peft_config: PeftConfig, key: str) -> bool:
return check_target_module_exists(peft_config, key)
def _set_adapter_layers(self, enabled: bool) -> None:
for module in self.model.modules():
if isinstance(module, (LNTuningLayer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self) -> None:
"""Enable all adapters.
Call this if you have previously disabled all adapters and want to re-enable them.
"""
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self) -> None:
"""Disable all adapters.
When disabling all adapters, the model output corresponds to the output of the base model.
"""
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name: str) -> None:
for module in self.model.modules():
if isinstance(module, LNTuningLayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
def _unload_and_optionally_merge(
self,
merge=True,
progressbar: bool = False,
safe_merge: bool = False,
adapter_names: Optional[list[str]] = None,
):
self._unloading_checks(adapter_names)
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
desc = "Unloading adapters " + ("and merging " if merge else "") + "model"
for key in tqdm(key_list, disable=not progressbar, desc=desc):
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
return self.model
def unload(self):
return self._unload_and_optionally_merge(merge=False)
def merge_and_unload(
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
) -> nn.Module:
return self._unload_and_optionally_merge(merge=True)