Yw22's picture
init demo
d711508
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
import warnings
from dataclasses import asdict
from enum import Enum
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.nn.init import _calculate_correct_fan
from tqdm import tqdm
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
from peft.utils import (
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
_get_submodules,
)
from ..tuners_utils import _maybe_include_all_linear_layers
from .buffer_dict import BufferDict
from .config import VeraConfig
from .layer import Linear, VeraLayer
def _kaiming_init(
tensor_or_shape: Union[torch.Tensor, tuple[int, ...]],
generator: torch.Generator,
) -> torch.Tensor:
"""
Kaiming Uniform Initialisation adapted to accept a `torch.Generator` object for PRNG.
Args:
tensor_or_shape (`Union[torch.Tensor, tuple[int, ...]]`):
Tensor to initialise, or shape of new tensor to create and then initialise.
generator: (`torch.Generator`):
Generator object that manages the state of the PRNG algorithm in use.
Returns:
`torch.Tensor`: The initialised tensor.
"""
if isinstance(tensor_or_shape, tuple):
tensor = torch.empty(tensor_or_shape)
else:
tensor = tensor_or_shape
fan = _calculate_correct_fan(tensor, "fan_in")
gain = math.sqrt(2)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std
with torch.no_grad():
return tensor.uniform_(-bound, bound, generator=generator)
class VeraModel(BaseTuner):
"""
Creates Vector-based Random Matrix Adaptation (Vera) model from a pretrained transformers model.
Args:
model ([`~transformers.PreTrainedModel`]): The model to be adapted.
config ([`VeraConfig`]): The configuration of the Vera model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
`torch.nn.Module`: The Vera model.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import VeraConfig, get_peft_model
>>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
>>> config = VeraConfig(r=128)
>>> model = get_peft_model(base_model, config)
```
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`VeraConfig`]): The configuration of the Vera model.
"""
prefix: str = "vera_lambda"
def __init__(self, model, config, adapter_name) -> None:
super().__init__(model, config, adapter_name)
def _find_first_dim(self, config) -> tuple[int, int]:
"""
Finds the first linear layer that has been wrapped with Vera, and extract the input and output dimension.
This will be used for determining the size of the shared vera_A and vera_B matrices.
This will throw an error if there are multiple layers of the same type with different shapes.
"""
model_config = getattr(self.model, "config", {"model_type": "custom"})
if hasattr(model_config, "to_dict"):
model_config = model_config.to_dict()
peft_config = self._prepare_adapter_config(config, model_config)
peft_config = _maybe_include_all_linear_layers(peft_config, self.model)
first_shape = None
for key, module in self.model.named_modules():
if not self._check_target_module_exists(peft_config, key):
continue
if isinstance(module, (nn.Linear, Conv1D)):
module_shape = tuple(module.weight.shape)
if isinstance(module, Conv1D):
module_shape = module_shape[::-1]
else:
continue
if first_shape is None:
first_shape = module_shape
continue
if module_shape != first_shape:
raise ValueError(
"Multiple target layers with different dimensions were specified. VeRA only supports a "
f"single dimension size. Expected shape {first_shape}, got {module_shape}."
)
if first_shape is None:
msg = "No layers types compatible with VeRA were found. Please check `peft_config.target_modules`."
raise ValueError(msg)
return first_shape
def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None:
first_linear_out_dim, first_linear_in_dim = self._find_first_dim(config)
# use of persistent to exclude vera_A and vera_B from the state dict if we choose not to save them.
self.vera_A = BufferDict({}, persistent=config.save_projection)
self.vera_B = BufferDict({}, persistent=config.save_projection)
# deterministic init of vera_A and vera_B if we know the key
generator = torch.Generator(device="cpu").manual_seed(config.projection_prng_key)
vera_A = _kaiming_init((config.r, first_linear_in_dim), generator=generator)
vera_B = _kaiming_init((first_linear_out_dim, config.r), generator=generator)
self.vera_A[adapter_name] = vera_A
self.vera_B[adapter_name] = vera_B
def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None:
self._init_vera_A_vera_B(config, adapter_name)
def _check_new_adapter_config(self, config: VeraConfig) -> None:
"""
A helper method to check the config when a new adapter is being added.
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
"""
# the below todo is copied from LoRA
# TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check
# does not fully correspond to the error message.
if (len(self.peft_config) > 1) and (config.bias != "none"):
raise ValueError(
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
"set bias to 'none' for all adapters."
)
for existing_config in self.peft_config.values():
if existing_config is config:
# skip the current config
continue
if existing_config.projection_prng_key != config.projection_prng_key:
raise ValueError(
f"Vera PRNG initialisation key must be the same for all adapters. Got {config.projection_prng_key=} but "
f"previous config had {existing_config.projection_prng_key}."
)
save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()})
if len(save_project_unique_values) > 1:
raise ValueError(
"VeRA projection weights must be saved for all adapters or none, but got multiple different values: "
f"{save_project_unique_values}"
)
@staticmethod
def _check_target_module_exists(vera_config, key):
return check_target_module_exists(vera_config, key)
def _create_and_replace(
self,
vera_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
r = vera_config.r
bias = hasattr(target, "bias") and target.bias is not None
kwargs = {
"r": r,
"vera_dropout": vera_config.vera_dropout,
"fan_in_fan_out": vera_config.fan_in_fan_out,
"init_weights": vera_config.init_weights,
}
kwargs["bias"] = bias
# TODO: add quantization support
if isinstance(target, Linear):
target.update_layer(
adapter_name,
self.vera_A,
self.vera_B,
r,
vera_config.vera_dropout,
vera_config.init_weights,
d_initial=vera_config.d_initial,
)
else:
new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs)
if adapter_name not in self.active_adapter:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
@staticmethod
def _replace_module(parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# It's not necessary to set requires_grad here, as that is handled by
# _mark_only_adapters_as_trainable
# child layer wraps the original module, unpack it
if hasattr(child, "base_layer"):
child = child.base_layer
if not hasattr(new_module, "base_layer"):
new_module.weight = child.weight
if hasattr(child, "bias"):
new_module.bias = child.bias
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "vera_" in name:
module.to(child.weight.device)
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
for active_adapter in self.active_adapters:
bias = self.peft_config[active_adapter].bias
if bias == "none":
continue
if bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "vera_only":
for m in model.modules():
if isinstance(m, VeraLayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.")
@staticmethod
def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs):
bias = kwargs.pop("bias", False)
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Linear):
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = False
elif isinstance(target_base_layer, Conv1D):
kwargs["is_target_conv_1d_layer"] = True
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. Currently, only the following modules are supported: "
"`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`."
)
new_module = Linear(
target,
vera_A,
vera_B,
adapter_name,
bias=bias,
d_initial=vera_config.d_initial,
**kwargs,
)
return new_module
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
config_dict = {}
for key, value in self.peft_config.items():
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
if inference:
config["inference_mode"] = True
config_dict[key] = config
return config
def _set_adapter_layers(self, enabled=True):
for module in self.model.modules():
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self):
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self):
for active_adapter in self.active_adapters:
val = self.peft_config[active_adapter].bias
if val != "none":
msg = (
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
"output as the the base model would without adaption."
)
warnings.warn(msg)
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name):
for module in self.model.modules():
if isinstance(module, VeraLayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _unload_and_optionally_merge(
self,
merge=True,
progressbar: bool = False,
safe_merge: bool = False,
adapter_names: Optional[list[str]] = None,
):
# we cannot use self.prefix as we want to include non-trainable vera parameters
key_list = [key for key, _ in self.model.named_modules() if "vera" not in key]
desc = "Unloading " + ("and merging " if merge else "") + "model"
for key in tqdm(key_list, disable=not progressbar, desc=desc):
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
elif isinstance(target, ModulesToSaveWrapper):
# save any additional trainable modules part of `modules_to_save`
setattr(parent, target_name, target.modules_to_save[target.active_adapter])
return self.model
def delete_adapter(self, adapter_name: str):
"""
Deletes an existing adapter.
Args:
adapter_name (str): Name of the adapter to be deleted.
"""
if adapter_name not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter_name} does not exist")
del self.peft_config[adapter_name]
# we cannot use self.prefix as we want to include non-trainable vera parameters
key_list = [key for key, _ in self.model.named_modules() if "vera" not in key]
new_adapter = None
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, VeraLayer):
target.delete_adapter(adapter_name)
if new_adapter is None:
new_adapter = target.active_adapter[:]
self.active_adapter = new_adapter or []
def merge_and_unload(
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
):
r"""
This method merges the Vera layers into the base model. This is needed if someone wants to use the base model
as a standalone model.
Args:
progressbar (`bool`):
whether to show a progressbar indicating the unload and merge process
safe_merge (`bool`):
whether to activate the safe merging check to check if there is any potential Nan in the adapter
weights
adapter_names (`list[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import PeftModel
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
>>> model = PeftModel.from_pretrained(base_model, peft_model_id)
>>> merged_model = model.merge_and_unload()
```
"""
return self._unload_and_optionally_merge(
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
)
def unload(self):
"""
Gets back the base model by removing all the Vera modules without merging. This gives back the original base
model.
"""
return self._unload_and_optionally_merge(merge=False)