Tirath5504 commited on
Commit
79b25e5
·
verified ·
1 Parent(s): 435234f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +239 -230
app.py CHANGED
@@ -1,230 +1,239 @@
1
- import gradio as gr # type: ignore
2
- import pandas as pd
3
- import re
4
- import spacy # type: ignore
5
- from sklearn.cluster import KMeans
6
- from sklearn.metrics.pairwise import cosine_similarity
7
- from sklearn.feature_extraction.text import TfidfVectorizer
8
- from sentence_transformers import SentenceTransformer, util # type: ignore
9
- from transformers import pipeline, AutoTokenizer
10
- import textstat # type: ignore
11
-
12
- sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
13
- tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
14
-
15
- nlp = spacy.load("en_core_web_sm")
16
-
17
- model = SentenceTransformer('all-MiniLM-L6-v2')
18
-
19
- weights = {
20
- "information_density": 0.2,
21
- "unique_key_points": 0.8,
22
- "strength_word_count": 0.002,
23
- "weakness_word_count": 0.004,
24
- "discussion_word_count": 0.01
25
- }
26
-
27
- THRESHOLDS = {
28
- "normalized_length": (0.15, 0.25),
29
- "unique_key_points": (3, 10),
30
- "information_density": (0.01, 0.02),
31
- "unique_insights_per_word": 0.002,
32
- "optimization_score": 0.7,
33
- "composite_score": 5,
34
- "adjusted_argument_strength": 0.75
35
- }
36
-
37
- def chunk_text(text, max_length):
38
- tokens = tokenizer(text, return_tensors="pt", truncation=False)["input_ids"].squeeze(0).tolist()
39
- return [tokenizer.decode(tokens[i:i+max_length]) for i in range(0, len(tokens), max_length)]
40
-
41
- def analyze_text(texts):
42
- results = []
43
- for text in texts:
44
- chunks = chunk_text(text, max_length=200)
45
- chunk_results = sentiment_analyzer(chunks)
46
- overall_sentiment = {
47
- "label": "POSITIVE" if sum(1 for res in chunk_results if res["label"] == "POSITIVE") >= len(chunk_results) / 2 else "NEGATIVE",
48
- "score": sum(res["score"] for res in chunk_results) / len(chunk_results),
49
- }
50
- results.append(overall_sentiment)
51
- return results
52
-
53
- def word_count(text):
54
- return len(text.split()) if isinstance(text, str) else 0
55
-
56
- def count_citations(text):
57
- doc = nlp(text)
58
- return sum(1 for ent in doc.ents if ent.label_ in ['WORK_OF_ART', 'ORG', 'GPE'])
59
-
60
- def calculate_unique_insights_per_word(text):
61
- sentences = text.split('.')
62
- tfidf = TfidfVectorizer().fit_transform(sentences)
63
- similarities = cosine_similarity(tfidf)
64
- avg_similarity = (similarities.sum() - len(sentences)) / (len(sentences)**2 - len(sentences))
65
- return 1 - avg_similarity
66
-
67
- def calculate_unique_key_points_and_density(texts):
68
- unique_key_points = []
69
- information_density = []
70
-
71
- for text in texts:
72
- if not isinstance(text, str) or text.strip() == "":
73
- unique_key_points.append(0)
74
- information_density.append(0)
75
- continue
76
-
77
- doc = nlp(text)
78
- sentences = [sent.text for sent in doc.sents]
79
-
80
- embeddings = model.encode(sentences)
81
-
82
- n_clusters = max(1, len(sentences) // 5)
83
- kmeans = KMeans(n_clusters=n_clusters, random_state=42)
84
- kmeans.fit(embeddings)
85
-
86
- cluster_centers = kmeans.cluster_centers_
87
- unique_points_count = len(cluster_centers)
88
-
89
- word_count = len(text.split())
90
- density = unique_points_count / word_count if word_count > 0 else 0
91
-
92
- unique_key_points.append(unique_points_count)
93
- information_density.append(density)
94
-
95
- return unique_key_points, information_density
96
-
97
- def segment_comments(comments):
98
- if comments == "N/A":
99
- return {"strengths": "", "weaknesses": "", "general_discussion": ""}
100
-
101
- strengths = re.search(r"- Strengths:\n([\s\S]*?)(\n- Weaknesses:|\Z)", comments)
102
- weaknesses = re.search(r"- Weaknesses:\n([\s\S]*?)(\n- General Discussion:|\Z)", comments)
103
- general_discussion = re.search(r"- General Discussion:\n([\s\S]*?)\Z", comments)
104
-
105
- return {
106
- "strengths": strengths.group(1).strip() if strengths else "",
107
- "weaknesses": weaknesses.group(1).strip() if weaknesses else "",
108
- "general_discussion": general_discussion.group(1).strip() if general_discussion else ""
109
- }
110
-
111
- def preprocess(comment, abstract):
112
- df = pd.DataFrame({"comments": [comment]})
113
- abstracts = pd.DataFrame({"abstract": [abstract]})
114
-
115
- segmented_reviews = df["comments"].apply(segment_comments)
116
- df["strengths"] = segmented_reviews.apply(lambda x: x["strengths"])
117
- df["weaknesses"] = segmented_reviews.apply(lambda x: x["weaknesses"])
118
- df["general_discussion"] = segmented_reviews.apply(lambda x: x["general_discussion"])
119
-
120
- comments_embeddings = model.encode(df['comments'].tolist(), convert_to_tensor=True)
121
- abstract_embeddings = model.encode(abstracts["abstract"].tolist(), convert_to_tensor=True)
122
- df['content_relevance'] = util.cos_sim(comments_embeddings, abstract_embeddings).diagonal()
123
-
124
- df['evidence_support'] = df['comments'].apply(count_citations)
125
-
126
- df['strengths'] = df['strengths'].fillna('').astype(str)
127
- texts = df['strengths'].tolist()
128
- results = analyze_text(texts)
129
- df['strength_argument_score'] = [result['score'] for result in results]
130
-
131
- df['weaknesses'] = df['weaknesses'].fillna('').astype(str)
132
- texts = df['weaknesses'].tolist()
133
- results = analyze_text(texts)
134
- df['weakness_argument_score'] = [result['score'] for result in results]
135
-
136
- df['argument_strength'] = (df['strength_argument_score'] + df['weakness_argument_score']) / 2
137
-
138
- df['readability_index'] = df['comments'].apply(textstat.flesch_reading_ease)
139
- df['sentence_complexity'] = df['comments'].apply(textstat.sentence_count)
140
- df['technical_depth'] = df['readability_index'] / df['sentence_complexity']
141
-
142
- df['total_word_count'] = df['comments'].apply(word_count)
143
- df['strength_word_count'] = df['strengths'].apply(word_count)
144
- df['weakness_word_count'] = df['weaknesses'].apply(word_count)
145
- df['discussion_word_count'] = df['general_discussion'].apply(word_count)
146
-
147
- average_length = df['total_word_count'].mean()
148
- df['normalized_length'] = df['total_word_count'] / average_length
149
- df["unique_key_points"], df["information_density"] = calculate_unique_key_points_and_density(df["comments"])
150
-
151
- df['unique_insights_per_word'] = df['comments'].apply(calculate_unique_insights_per_word) / df['total_word_count']
152
-
153
- return df
154
-
155
- def calculate_composite_score(df):
156
- df['composite_score'] = (
157
- weights['information_density'] * df['information_density'] +
158
- weights['unique_key_points'] * df['unique_key_points'] +
159
- weights['strength_word_count'] * df['strength_word_count'] +
160
- weights['weakness_word_count'] * df['weakness_word_count'] +
161
- weights['discussion_word_count'] * df['discussion_word_count']
162
- )
163
-
164
- return df
165
-
166
- def classify_review_quality(row):
167
- if row['composite_score'] > 12:
168
- return 'Excellent Review Quality'
169
- elif row['composite_score'] < 3:
170
- return 'Poor Review Quality'
171
- else:
172
- return 'Moderate Review Quality'
173
-
174
- def determine_review_quality(df):
175
-
176
- df['normalized_length'] = df['total_word_count'] / df['total_word_count'].max()
177
- df['unique_insights_per_word'] = df['unique_key_points'] / df['normalized_length']
178
- df['adjusted_argument_strength'] = df['argument_strength'] / (1 + df['sentence_complexity'])
179
-
180
- df['review_quality'] = df.apply(classify_review_quality, axis=1)
181
-
182
- return df
183
-
184
- def heuristic_optimization(row):
185
- suggestions = []
186
-
187
- if row["strength_word_count"] > 100 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
188
- suggestions.append("Summarize redundant strengths.")
189
- elif row["strength_word_count"] < 50 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
190
- suggestions.append("Add more impactful strengths.")
191
-
192
- if row["weakness_word_count"] > 100 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
193
- suggestions.append("Remove repetitive criticisms.")
194
- elif row["weakness_word_count"] < 50 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
195
- suggestions.append("Add specific, actionable weaknesses.")
196
-
197
- if row["discussion_word_count"] < 100 and row["information_density"] < THRESHOLDS["information_density"][0]:
198
- suggestions.append("Elaborate with new insights or examples.")
199
- elif row["discussion_word_count"] > 300 and row["information_density"] > THRESHOLDS["information_density"][1]:
200
- suggestions.append("Summarize key discussion points.")
201
-
202
- if row["normalized_length"] < THRESHOLDS["normalized_length"][0]:
203
- suggestions.append("Expand sections for better coverage.")
204
- elif row["normalized_length"] > THRESHOLDS["normalized_length"][1]:
205
- suggestions.append("Condense content to improve readability.")
206
-
207
- if row["unique_key_points"] < THRESHOLDS["unique_key_points"][0]:
208
- suggestions.append("Add more unique insights.")
209
- elif row["unique_key_points"] > THRESHOLDS["unique_key_points"][1]:
210
- suggestions.append("Streamline ideas for clarity.")
211
-
212
- if row["composite_score"] < THRESHOLDS["composite_score"]:
213
- suggestions.append("Enhance clarity, evidence, and argumentation.")
214
-
215
- if row["review_quality"] == "Low":
216
- suggestions.append("Significant revisions required.")
217
- elif row["review_quality"] == "Moderate":
218
- suggestions.append("Minor refinements recommended.")
219
-
220
- return suggestions
221
-
222
- def pipeline(comment, abstract):
223
- df = preprocess(comment, abstract)
224
- df = calculate_composite_score(df)
225
- df = determine_review_quality(df)
226
- df["optimization_suggestions"] = df.apply(heuristic_optimization, axis=1)
227
- return df["composite_score"][0], " ".join(df["optimization_suggestions"][0])
228
-
229
- demo = gr.Interface(fn=pipeline, inputs=["text", "text"], outputs=["text", "text"])
230
- demo.launch()
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr # type: ignore
2
+ import pandas as pd
3
+ import re
4
+ import spacy # type: ignore
5
+ from sklearn.cluster import KMeans
6
+ from sklearn.metrics.pairwise import cosine_similarity
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
+ from sentence_transformers import SentenceTransformer, util # type: ignore
9
+ from transformers import pipeline, AutoTokenizer
10
+ import textstat # type: ignore
11
+
12
+ sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
13
+ tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
14
+
15
+ nlp = spacy.load("en_core_web_sm")
16
+
17
+ model = SentenceTransformer('all-MiniLM-L6-v2')
18
+
19
+ weights = {
20
+ "information_density": 0.2,
21
+ "unique_key_points": 0.8,
22
+ "strength_word_count": 0.002,
23
+ "weakness_word_count": 0.004,
24
+ "discussion_word_count": 0.01
25
+ }
26
+
27
+ THRESHOLDS = {
28
+ "normalized_length": (0.15, 0.25),
29
+ "unique_key_points": (3, 10),
30
+ "information_density": (0.01, 0.02),
31
+ "unique_insights_per_word": 0.002,
32
+ "optimization_score": 0.7,
33
+ "composite_score": 5,
34
+ "adjusted_argument_strength": 0.75
35
+ }
36
+
37
+ def chunk_text(text, max_length):
38
+ tokens = tokenizer(text, return_tensors="pt", truncation=False)["input_ids"].squeeze(0).tolist()
39
+ return [tokenizer.decode(tokens[i:i+max_length]) for i in range(0, len(tokens), max_length)]
40
+
41
+ def analyze_text(texts):
42
+ results = []
43
+ for text in texts:
44
+ chunks = chunk_text(text, max_length=200)
45
+ chunk_results = sentiment_analyzer(chunks)
46
+ overall_sentiment = {
47
+ "label": "POSITIVE" if sum(1 for res in chunk_results if res["label"] == "POSITIVE") >= len(chunk_results) / 2 else "NEGATIVE",
48
+ "score": sum(res["score"] for res in chunk_results) / len(chunk_results),
49
+ }
50
+ results.append(overall_sentiment)
51
+ return results
52
+
53
+ def word_count(text):
54
+ return len(text.split()) if isinstance(text, str) else 0
55
+
56
+ def count_citations(text):
57
+ doc = nlp(text)
58
+ return sum(1 for ent in doc.ents if ent.label_ in ['WORK_OF_ART', 'ORG', 'GPE'])
59
+
60
+ def calculate_unique_insights_per_word(text):
61
+ sentences = text.split('.')
62
+ tfidf = TfidfVectorizer().fit_transform(sentences)
63
+ similarities = cosine_similarity(tfidf)
64
+ avg_similarity = (similarities.sum() - len(sentences)) / (len(sentences)**2 - len(sentences))
65
+ return 1 - avg_similarity
66
+
67
+ def calculate_unique_key_points_and_density(texts):
68
+ unique_key_points = []
69
+ information_density = []
70
+
71
+ for text in texts:
72
+ if not isinstance(text, str) or text.strip() == "":
73
+ unique_key_points.append(0)
74
+ information_density.append(0)
75
+ continue
76
+
77
+ doc = nlp(text)
78
+ sentences = [sent.text for sent in doc.sents]
79
+
80
+ embeddings = model.encode(sentences)
81
+
82
+ n_clusters = max(1, len(sentences) // 5)
83
+ kmeans = KMeans(n_clusters=n_clusters, random_state=42)
84
+ kmeans.fit(embeddings)
85
+
86
+ cluster_centers = kmeans.cluster_centers_
87
+ unique_points_count = len(cluster_centers)
88
+
89
+ word_count = len(text.split())
90
+ density = unique_points_count / word_count if word_count > 0 else 0
91
+
92
+ unique_key_points.append(unique_points_count)
93
+ information_density.append(density)
94
+
95
+ return unique_key_points, information_density
96
+
97
+ def segment_comments(comments):
98
+ if comments == "N/A":
99
+ return {"strengths": "", "weaknesses": "", "general_discussion": ""}
100
+
101
+ strengths = re.search(r"- Strengths:\n([\s\S]*?)(\n- Weaknesses:|\Z)", comments)
102
+ weaknesses = re.search(r"- Weaknesses:\n([\s\S]*?)(\n- General Discussion:|\Z)", comments)
103
+ general_discussion = re.search(r"- General Discussion:\n([\s\S]*?)\Z", comments)
104
+
105
+ return {
106
+ "strengths": strengths.group(1).strip() if strengths else "",
107
+ "weaknesses": weaknesses.group(1).strip() if weaknesses else "",
108
+ "general_discussion": general_discussion.group(1).strip() if general_discussion else ""
109
+ }
110
+
111
+ def preprocess(comment, abstract):
112
+ df = pd.DataFrame({"comments": [comment]})
113
+ abstracts = pd.DataFrame({"abstract": [abstract]})
114
+
115
+ segmented_reviews = df["comments"].apply(segment_comments)
116
+ df["strengths"] = segmented_reviews.apply(lambda x: x["strengths"])
117
+ df["weaknesses"] = segmented_reviews.apply(lambda x: x["weaknesses"])
118
+ df["general_discussion"] = segmented_reviews.apply(lambda x: x["general_discussion"])
119
+
120
+ comments_embeddings = model.encode(df['comments'].tolist(), convert_to_tensor=True)
121
+ abstract_embeddings = model.encode(abstracts["abstract"].tolist(), convert_to_tensor=True)
122
+ df['content_relevance'] = util.cos_sim(comments_embeddings, abstract_embeddings).diagonal()
123
+
124
+ df['evidence_support'] = df['comments'].apply(count_citations)
125
+
126
+ df['strengths'] = df['strengths'].fillna('').astype(str)
127
+ texts = df['strengths'].tolist()
128
+ results = analyze_text(texts)
129
+ df['strength_argument_score'] = [result['score'] for result in results]
130
+
131
+ df['weaknesses'] = df['weaknesses'].fillna('').astype(str)
132
+ texts = df['weaknesses'].tolist()
133
+ results = analyze_text(texts)
134
+ df['weakness_argument_score'] = [result['score'] for result in results]
135
+
136
+ df['argument_strength'] = (df['strength_argument_score'] + df['weakness_argument_score']) / 2
137
+
138
+ df['readability_index'] = df['comments'].apply(textstat.flesch_reading_ease)
139
+ df['sentence_complexity'] = df['comments'].apply(textstat.sentence_count)
140
+ df['technical_depth'] = df['readability_index'] / df['sentence_complexity']
141
+
142
+ df['total_word_count'] = df['comments'].apply(word_count)
143
+ df['strength_word_count'] = df['strengths'].apply(word_count)
144
+ df['weakness_word_count'] = df['weaknesses'].apply(word_count)
145
+ df['discussion_word_count'] = df['general_discussion'].apply(word_count)
146
+
147
+ average_length = df['total_word_count'].mean()
148
+ df['normalized_length'] = df['total_word_count'] / average_length
149
+ df["unique_key_points"], df["information_density"] = calculate_unique_key_points_and_density(df["comments"])
150
+
151
+ df['unique_insights_per_word'] = df['comments'].apply(calculate_unique_insights_per_word) / df['total_word_count']
152
+
153
+ return df
154
+
155
+ def calculate_composite_score(df):
156
+ df['composite_score'] = (
157
+ weights['information_density'] * df['information_density'] +
158
+ weights['unique_key_points'] * df['unique_key_points'] +
159
+ weights['strength_word_count'] * df['strength_word_count'] +
160
+ weights['weakness_word_count'] * df['weakness_word_count'] +
161
+ weights['discussion_word_count'] * df['discussion_word_count']
162
+ )
163
+
164
+ return df
165
+
166
+ def classify_review_quality(row):
167
+ if row['composite_score'] > 12:
168
+ return 'Excellent Review Quality'
169
+ elif row['composite_score'] < 3:
170
+ return 'Poor Review Quality'
171
+ else:
172
+ return 'Moderate Review Quality'
173
+
174
+ def determine_review_quality(df):
175
+
176
+ df['normalized_length'] = df['total_word_count'] / df['total_word_count'].max()
177
+ df['unique_insights_per_word'] = df['unique_key_points'] / df['normalized_length']
178
+ df['adjusted_argument_strength'] = df['argument_strength'] / (1 + df['sentence_complexity'])
179
+
180
+ df['review_quality'] = df.apply(classify_review_quality, axis=1)
181
+
182
+ return df
183
+
184
+ def heuristic_optimization(row):
185
+ suggestions = []
186
+
187
+ if row["strength_word_count"] > 100 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
188
+ suggestions.append("Summarize redundant strengths.")
189
+ elif row["strength_word_count"] < 50 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
190
+ suggestions.append("Add more impactful strengths.")
191
+
192
+ if row["weakness_word_count"] > 100 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
193
+ suggestions.append("Remove repetitive criticisms.")
194
+ elif row["weakness_word_count"] < 50 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
195
+ suggestions.append("Add specific, actionable weaknesses.")
196
+
197
+ if row["discussion_word_count"] < 100 and row["information_density"] < THRESHOLDS["information_density"][0]:
198
+ suggestions.append("Elaborate with new insights or examples.")
199
+ elif row["discussion_word_count"] > 300 and row["information_density"] > THRESHOLDS["information_density"][1]:
200
+ suggestions.append("Summarize key discussion points.")
201
+
202
+ if row["normalized_length"] < THRESHOLDS["normalized_length"][0]:
203
+ suggestions.append("Expand sections for better coverage.")
204
+ elif row["normalized_length"] > THRESHOLDS["normalized_length"][1]:
205
+ suggestions.append("Condense content to improve readability.")
206
+
207
+ if row["unique_key_points"] < THRESHOLDS["unique_key_points"][0]:
208
+ suggestions.append("Add more unique insights.")
209
+ elif row["unique_key_points"] > THRESHOLDS["unique_key_points"][1]:
210
+ suggestions.append("Streamline ideas for clarity.")
211
+
212
+ if row["composite_score"] < THRESHOLDS["composite_score"]:
213
+ suggestions.append("Enhance clarity, evidence, and argumentation.")
214
+
215
+ if row["review_quality"] == "Low":
216
+ suggestions.append("Significant revisions required.")
217
+ elif row["review_quality"] == "Moderate":
218
+ suggestions.append("Minor refinements recommended.")
219
+
220
+ return suggestions
221
+
222
+ def pipeline(comment, abstract):
223
+ df = preprocess(comment, abstract)
224
+ df = calculate_composite_score(df)
225
+ df = determine_review_quality(df)
226
+ df["optimization_suggestions"] = df.apply(heuristic_optimization, axis=1)
227
+ return df["review_quality"][0], " ".join(df["optimization_suggestions"][0])
228
+
229
+ with gr.Blocks() as demo:
230
+ gr.Markdown("# Dynaic Length Optimization of Peer Review")
231
+ with gr.Row():
232
+ comment = gr.Textbox(label="Peer Review Comments")
233
+ abstract = gr.Textbox(label="Paper Abstract")
234
+ review_quality = gr.Textbox(label="Predicted Review Quality")
235
+ suggestions = gr.Textbox(label="Suggestions")
236
+
237
+ comment.change(fn=pipeline, inputs=[comment, abstract], outputs=[review_quality, suggestions])
238
+
239
+ demo.launch()