Tirath5504
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,230 +1,239 @@
|
|
1 |
-
import gradio as gr # type: ignore
|
2 |
-
import pandas as pd
|
3 |
-
import re
|
4 |
-
import spacy # type: ignore
|
5 |
-
from sklearn.cluster import KMeans
|
6 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
-
from sentence_transformers import SentenceTransformer, util # type: ignore
|
9 |
-
from transformers import pipeline, AutoTokenizer
|
10 |
-
import textstat # type: ignore
|
11 |
-
|
12 |
-
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
14 |
-
|
15 |
-
nlp = spacy.load("en_core_web_sm")
|
16 |
-
|
17 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
18 |
-
|
19 |
-
weights = {
|
20 |
-
"information_density": 0.2,
|
21 |
-
"unique_key_points": 0.8,
|
22 |
-
"strength_word_count": 0.002,
|
23 |
-
"weakness_word_count": 0.004,
|
24 |
-
"discussion_word_count": 0.01
|
25 |
-
}
|
26 |
-
|
27 |
-
THRESHOLDS = {
|
28 |
-
"normalized_length": (0.15, 0.25),
|
29 |
-
"unique_key_points": (3, 10),
|
30 |
-
"information_density": (0.01, 0.02),
|
31 |
-
"unique_insights_per_word": 0.002,
|
32 |
-
"optimization_score": 0.7,
|
33 |
-
"composite_score": 5,
|
34 |
-
"adjusted_argument_strength": 0.75
|
35 |
-
}
|
36 |
-
|
37 |
-
def chunk_text(text, max_length):
|
38 |
-
tokens = tokenizer(text, return_tensors="pt", truncation=False)["input_ids"].squeeze(0).tolist()
|
39 |
-
return [tokenizer.decode(tokens[i:i+max_length]) for i in range(0, len(tokens), max_length)]
|
40 |
-
|
41 |
-
def analyze_text(texts):
|
42 |
-
results = []
|
43 |
-
for text in texts:
|
44 |
-
chunks = chunk_text(text, max_length=200)
|
45 |
-
chunk_results = sentiment_analyzer(chunks)
|
46 |
-
overall_sentiment = {
|
47 |
-
"label": "POSITIVE" if sum(1 for res in chunk_results if res["label"] == "POSITIVE") >= len(chunk_results) / 2 else "NEGATIVE",
|
48 |
-
"score": sum(res["score"] for res in chunk_results) / len(chunk_results),
|
49 |
-
}
|
50 |
-
results.append(overall_sentiment)
|
51 |
-
return results
|
52 |
-
|
53 |
-
def word_count(text):
|
54 |
-
return len(text.split()) if isinstance(text, str) else 0
|
55 |
-
|
56 |
-
def count_citations(text):
|
57 |
-
doc = nlp(text)
|
58 |
-
return sum(1 for ent in doc.ents if ent.label_ in ['WORK_OF_ART', 'ORG', 'GPE'])
|
59 |
-
|
60 |
-
def calculate_unique_insights_per_word(text):
|
61 |
-
sentences = text.split('.')
|
62 |
-
tfidf = TfidfVectorizer().fit_transform(sentences)
|
63 |
-
similarities = cosine_similarity(tfidf)
|
64 |
-
avg_similarity = (similarities.sum() - len(sentences)) / (len(sentences)**2 - len(sentences))
|
65 |
-
return 1 - avg_similarity
|
66 |
-
|
67 |
-
def calculate_unique_key_points_and_density(texts):
|
68 |
-
unique_key_points = []
|
69 |
-
information_density = []
|
70 |
-
|
71 |
-
for text in texts:
|
72 |
-
if not isinstance(text, str) or text.strip() == "":
|
73 |
-
unique_key_points.append(0)
|
74 |
-
information_density.append(0)
|
75 |
-
continue
|
76 |
-
|
77 |
-
doc = nlp(text)
|
78 |
-
sentences = [sent.text for sent in doc.sents]
|
79 |
-
|
80 |
-
embeddings = model.encode(sentences)
|
81 |
-
|
82 |
-
n_clusters = max(1, len(sentences) // 5)
|
83 |
-
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
|
84 |
-
kmeans.fit(embeddings)
|
85 |
-
|
86 |
-
cluster_centers = kmeans.cluster_centers_
|
87 |
-
unique_points_count = len(cluster_centers)
|
88 |
-
|
89 |
-
word_count = len(text.split())
|
90 |
-
density = unique_points_count / word_count if word_count > 0 else 0
|
91 |
-
|
92 |
-
unique_key_points.append(unique_points_count)
|
93 |
-
information_density.append(density)
|
94 |
-
|
95 |
-
return unique_key_points, information_density
|
96 |
-
|
97 |
-
def segment_comments(comments):
|
98 |
-
if comments == "N/A":
|
99 |
-
return {"strengths": "", "weaknesses": "", "general_discussion": ""}
|
100 |
-
|
101 |
-
strengths = re.search(r"- Strengths:\n([\s\S]*?)(\n- Weaknesses:|\Z)", comments)
|
102 |
-
weaknesses = re.search(r"- Weaknesses:\n([\s\S]*?)(\n- General Discussion:|\Z)", comments)
|
103 |
-
general_discussion = re.search(r"- General Discussion:\n([\s\S]*?)\Z", comments)
|
104 |
-
|
105 |
-
return {
|
106 |
-
"strengths": strengths.group(1).strip() if strengths else "",
|
107 |
-
"weaknesses": weaknesses.group(1).strip() if weaknesses else "",
|
108 |
-
"general_discussion": general_discussion.group(1).strip() if general_discussion else ""
|
109 |
-
}
|
110 |
-
|
111 |
-
def preprocess(comment, abstract):
|
112 |
-
df = pd.DataFrame({"comments": [comment]})
|
113 |
-
abstracts = pd.DataFrame({"abstract": [abstract]})
|
114 |
-
|
115 |
-
segmented_reviews = df["comments"].apply(segment_comments)
|
116 |
-
df["strengths"] = segmented_reviews.apply(lambda x: x["strengths"])
|
117 |
-
df["weaknesses"] = segmented_reviews.apply(lambda x: x["weaknesses"])
|
118 |
-
df["general_discussion"] = segmented_reviews.apply(lambda x: x["general_discussion"])
|
119 |
-
|
120 |
-
comments_embeddings = model.encode(df['comments'].tolist(), convert_to_tensor=True)
|
121 |
-
abstract_embeddings = model.encode(abstracts["abstract"].tolist(), convert_to_tensor=True)
|
122 |
-
df['content_relevance'] = util.cos_sim(comments_embeddings, abstract_embeddings).diagonal()
|
123 |
-
|
124 |
-
df['evidence_support'] = df['comments'].apply(count_citations)
|
125 |
-
|
126 |
-
df['strengths'] = df['strengths'].fillna('').astype(str)
|
127 |
-
texts = df['strengths'].tolist()
|
128 |
-
results = analyze_text(texts)
|
129 |
-
df['strength_argument_score'] = [result['score'] for result in results]
|
130 |
-
|
131 |
-
df['weaknesses'] = df['weaknesses'].fillna('').astype(str)
|
132 |
-
texts = df['weaknesses'].tolist()
|
133 |
-
results = analyze_text(texts)
|
134 |
-
df['weakness_argument_score'] = [result['score'] for result in results]
|
135 |
-
|
136 |
-
df['argument_strength'] = (df['strength_argument_score'] + df['weakness_argument_score']) / 2
|
137 |
-
|
138 |
-
df['readability_index'] = df['comments'].apply(textstat.flesch_reading_ease)
|
139 |
-
df['sentence_complexity'] = df['comments'].apply(textstat.sentence_count)
|
140 |
-
df['technical_depth'] = df['readability_index'] / df['sentence_complexity']
|
141 |
-
|
142 |
-
df['total_word_count'] = df['comments'].apply(word_count)
|
143 |
-
df['strength_word_count'] = df['strengths'].apply(word_count)
|
144 |
-
df['weakness_word_count'] = df['weaknesses'].apply(word_count)
|
145 |
-
df['discussion_word_count'] = df['general_discussion'].apply(word_count)
|
146 |
-
|
147 |
-
average_length = df['total_word_count'].mean()
|
148 |
-
df['normalized_length'] = df['total_word_count'] / average_length
|
149 |
-
df["unique_key_points"], df["information_density"] = calculate_unique_key_points_and_density(df["comments"])
|
150 |
-
|
151 |
-
df['unique_insights_per_word'] = df['comments'].apply(calculate_unique_insights_per_word) / df['total_word_count']
|
152 |
-
|
153 |
-
return df
|
154 |
-
|
155 |
-
def calculate_composite_score(df):
|
156 |
-
df['composite_score'] = (
|
157 |
-
weights['information_density'] * df['information_density'] +
|
158 |
-
weights['unique_key_points'] * df['unique_key_points'] +
|
159 |
-
weights['strength_word_count'] * df['strength_word_count'] +
|
160 |
-
weights['weakness_word_count'] * df['weakness_word_count'] +
|
161 |
-
weights['discussion_word_count'] * df['discussion_word_count']
|
162 |
-
)
|
163 |
-
|
164 |
-
return df
|
165 |
-
|
166 |
-
def classify_review_quality(row):
|
167 |
-
if row['composite_score'] > 12:
|
168 |
-
return 'Excellent Review Quality'
|
169 |
-
elif row['composite_score'] < 3:
|
170 |
-
return 'Poor Review Quality'
|
171 |
-
else:
|
172 |
-
return 'Moderate Review Quality'
|
173 |
-
|
174 |
-
def determine_review_quality(df):
|
175 |
-
|
176 |
-
df['normalized_length'] = df['total_word_count'] / df['total_word_count'].max()
|
177 |
-
df['unique_insights_per_word'] = df['unique_key_points'] / df['normalized_length']
|
178 |
-
df['adjusted_argument_strength'] = df['argument_strength'] / (1 + df['sentence_complexity'])
|
179 |
-
|
180 |
-
df['review_quality'] = df.apply(classify_review_quality, axis=1)
|
181 |
-
|
182 |
-
return df
|
183 |
-
|
184 |
-
def heuristic_optimization(row):
|
185 |
-
suggestions = []
|
186 |
-
|
187 |
-
if row["strength_word_count"] > 100 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
188 |
-
suggestions.append("Summarize redundant strengths.")
|
189 |
-
elif row["strength_word_count"] < 50 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
190 |
-
suggestions.append("Add more impactful strengths.")
|
191 |
-
|
192 |
-
if row["weakness_word_count"] > 100 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
193 |
-
suggestions.append("Remove repetitive criticisms.")
|
194 |
-
elif row["weakness_word_count"] < 50 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
195 |
-
suggestions.append("Add specific, actionable weaknesses.")
|
196 |
-
|
197 |
-
if row["discussion_word_count"] < 100 and row["information_density"] < THRESHOLDS["information_density"][0]:
|
198 |
-
suggestions.append("Elaborate with new insights or examples.")
|
199 |
-
elif row["discussion_word_count"] > 300 and row["information_density"] > THRESHOLDS["information_density"][1]:
|
200 |
-
suggestions.append("Summarize key discussion points.")
|
201 |
-
|
202 |
-
if row["normalized_length"] < THRESHOLDS["normalized_length"][0]:
|
203 |
-
suggestions.append("Expand sections for better coverage.")
|
204 |
-
elif row["normalized_length"] > THRESHOLDS["normalized_length"][1]:
|
205 |
-
suggestions.append("Condense content to improve readability.")
|
206 |
-
|
207 |
-
if row["unique_key_points"] < THRESHOLDS["unique_key_points"][0]:
|
208 |
-
suggestions.append("Add more unique insights.")
|
209 |
-
elif row["unique_key_points"] > THRESHOLDS["unique_key_points"][1]:
|
210 |
-
suggestions.append("Streamline ideas for clarity.")
|
211 |
-
|
212 |
-
if row["composite_score"] < THRESHOLDS["composite_score"]:
|
213 |
-
suggestions.append("Enhance clarity, evidence, and argumentation.")
|
214 |
-
|
215 |
-
if row["review_quality"] == "Low":
|
216 |
-
suggestions.append("Significant revisions required.")
|
217 |
-
elif row["review_quality"] == "Moderate":
|
218 |
-
suggestions.append("Minor refinements recommended.")
|
219 |
-
|
220 |
-
return suggestions
|
221 |
-
|
222 |
-
def pipeline(comment, abstract):
|
223 |
-
df = preprocess(comment, abstract)
|
224 |
-
df = calculate_composite_score(df)
|
225 |
-
df = determine_review_quality(df)
|
226 |
-
df["optimization_suggestions"] = df.apply(heuristic_optimization, axis=1)
|
227 |
-
return df["
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr # type: ignore
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
+
import spacy # type: ignore
|
5 |
+
from sklearn.cluster import KMeans
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sentence_transformers import SentenceTransformer, util # type: ignore
|
9 |
+
from transformers import pipeline, AutoTokenizer
|
10 |
+
import textstat # type: ignore
|
11 |
+
|
12 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
14 |
+
|
15 |
+
nlp = spacy.load("en_core_web_sm")
|
16 |
+
|
17 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
18 |
+
|
19 |
+
weights = {
|
20 |
+
"information_density": 0.2,
|
21 |
+
"unique_key_points": 0.8,
|
22 |
+
"strength_word_count": 0.002,
|
23 |
+
"weakness_word_count": 0.004,
|
24 |
+
"discussion_word_count": 0.01
|
25 |
+
}
|
26 |
+
|
27 |
+
THRESHOLDS = {
|
28 |
+
"normalized_length": (0.15, 0.25),
|
29 |
+
"unique_key_points": (3, 10),
|
30 |
+
"information_density": (0.01, 0.02),
|
31 |
+
"unique_insights_per_word": 0.002,
|
32 |
+
"optimization_score": 0.7,
|
33 |
+
"composite_score": 5,
|
34 |
+
"adjusted_argument_strength": 0.75
|
35 |
+
}
|
36 |
+
|
37 |
+
def chunk_text(text, max_length):
|
38 |
+
tokens = tokenizer(text, return_tensors="pt", truncation=False)["input_ids"].squeeze(0).tolist()
|
39 |
+
return [tokenizer.decode(tokens[i:i+max_length]) for i in range(0, len(tokens), max_length)]
|
40 |
+
|
41 |
+
def analyze_text(texts):
|
42 |
+
results = []
|
43 |
+
for text in texts:
|
44 |
+
chunks = chunk_text(text, max_length=200)
|
45 |
+
chunk_results = sentiment_analyzer(chunks)
|
46 |
+
overall_sentiment = {
|
47 |
+
"label": "POSITIVE" if sum(1 for res in chunk_results if res["label"] == "POSITIVE") >= len(chunk_results) / 2 else "NEGATIVE",
|
48 |
+
"score": sum(res["score"] for res in chunk_results) / len(chunk_results),
|
49 |
+
}
|
50 |
+
results.append(overall_sentiment)
|
51 |
+
return results
|
52 |
+
|
53 |
+
def word_count(text):
|
54 |
+
return len(text.split()) if isinstance(text, str) else 0
|
55 |
+
|
56 |
+
def count_citations(text):
|
57 |
+
doc = nlp(text)
|
58 |
+
return sum(1 for ent in doc.ents if ent.label_ in ['WORK_OF_ART', 'ORG', 'GPE'])
|
59 |
+
|
60 |
+
def calculate_unique_insights_per_word(text):
|
61 |
+
sentences = text.split('.')
|
62 |
+
tfidf = TfidfVectorizer().fit_transform(sentences)
|
63 |
+
similarities = cosine_similarity(tfidf)
|
64 |
+
avg_similarity = (similarities.sum() - len(sentences)) / (len(sentences)**2 - len(sentences))
|
65 |
+
return 1 - avg_similarity
|
66 |
+
|
67 |
+
def calculate_unique_key_points_and_density(texts):
|
68 |
+
unique_key_points = []
|
69 |
+
information_density = []
|
70 |
+
|
71 |
+
for text in texts:
|
72 |
+
if not isinstance(text, str) or text.strip() == "":
|
73 |
+
unique_key_points.append(0)
|
74 |
+
information_density.append(0)
|
75 |
+
continue
|
76 |
+
|
77 |
+
doc = nlp(text)
|
78 |
+
sentences = [sent.text for sent in doc.sents]
|
79 |
+
|
80 |
+
embeddings = model.encode(sentences)
|
81 |
+
|
82 |
+
n_clusters = max(1, len(sentences) // 5)
|
83 |
+
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
|
84 |
+
kmeans.fit(embeddings)
|
85 |
+
|
86 |
+
cluster_centers = kmeans.cluster_centers_
|
87 |
+
unique_points_count = len(cluster_centers)
|
88 |
+
|
89 |
+
word_count = len(text.split())
|
90 |
+
density = unique_points_count / word_count if word_count > 0 else 0
|
91 |
+
|
92 |
+
unique_key_points.append(unique_points_count)
|
93 |
+
information_density.append(density)
|
94 |
+
|
95 |
+
return unique_key_points, information_density
|
96 |
+
|
97 |
+
def segment_comments(comments):
|
98 |
+
if comments == "N/A":
|
99 |
+
return {"strengths": "", "weaknesses": "", "general_discussion": ""}
|
100 |
+
|
101 |
+
strengths = re.search(r"- Strengths:\n([\s\S]*?)(\n- Weaknesses:|\Z)", comments)
|
102 |
+
weaknesses = re.search(r"- Weaknesses:\n([\s\S]*?)(\n- General Discussion:|\Z)", comments)
|
103 |
+
general_discussion = re.search(r"- General Discussion:\n([\s\S]*?)\Z", comments)
|
104 |
+
|
105 |
+
return {
|
106 |
+
"strengths": strengths.group(1).strip() if strengths else "",
|
107 |
+
"weaknesses": weaknesses.group(1).strip() if weaknesses else "",
|
108 |
+
"general_discussion": general_discussion.group(1).strip() if general_discussion else ""
|
109 |
+
}
|
110 |
+
|
111 |
+
def preprocess(comment, abstract):
|
112 |
+
df = pd.DataFrame({"comments": [comment]})
|
113 |
+
abstracts = pd.DataFrame({"abstract": [abstract]})
|
114 |
+
|
115 |
+
segmented_reviews = df["comments"].apply(segment_comments)
|
116 |
+
df["strengths"] = segmented_reviews.apply(lambda x: x["strengths"])
|
117 |
+
df["weaknesses"] = segmented_reviews.apply(lambda x: x["weaknesses"])
|
118 |
+
df["general_discussion"] = segmented_reviews.apply(lambda x: x["general_discussion"])
|
119 |
+
|
120 |
+
comments_embeddings = model.encode(df['comments'].tolist(), convert_to_tensor=True)
|
121 |
+
abstract_embeddings = model.encode(abstracts["abstract"].tolist(), convert_to_tensor=True)
|
122 |
+
df['content_relevance'] = util.cos_sim(comments_embeddings, abstract_embeddings).diagonal()
|
123 |
+
|
124 |
+
df['evidence_support'] = df['comments'].apply(count_citations)
|
125 |
+
|
126 |
+
df['strengths'] = df['strengths'].fillna('').astype(str)
|
127 |
+
texts = df['strengths'].tolist()
|
128 |
+
results = analyze_text(texts)
|
129 |
+
df['strength_argument_score'] = [result['score'] for result in results]
|
130 |
+
|
131 |
+
df['weaknesses'] = df['weaknesses'].fillna('').astype(str)
|
132 |
+
texts = df['weaknesses'].tolist()
|
133 |
+
results = analyze_text(texts)
|
134 |
+
df['weakness_argument_score'] = [result['score'] for result in results]
|
135 |
+
|
136 |
+
df['argument_strength'] = (df['strength_argument_score'] + df['weakness_argument_score']) / 2
|
137 |
+
|
138 |
+
df['readability_index'] = df['comments'].apply(textstat.flesch_reading_ease)
|
139 |
+
df['sentence_complexity'] = df['comments'].apply(textstat.sentence_count)
|
140 |
+
df['technical_depth'] = df['readability_index'] / df['sentence_complexity']
|
141 |
+
|
142 |
+
df['total_word_count'] = df['comments'].apply(word_count)
|
143 |
+
df['strength_word_count'] = df['strengths'].apply(word_count)
|
144 |
+
df['weakness_word_count'] = df['weaknesses'].apply(word_count)
|
145 |
+
df['discussion_word_count'] = df['general_discussion'].apply(word_count)
|
146 |
+
|
147 |
+
average_length = df['total_word_count'].mean()
|
148 |
+
df['normalized_length'] = df['total_word_count'] / average_length
|
149 |
+
df["unique_key_points"], df["information_density"] = calculate_unique_key_points_and_density(df["comments"])
|
150 |
+
|
151 |
+
df['unique_insights_per_word'] = df['comments'].apply(calculate_unique_insights_per_word) / df['total_word_count']
|
152 |
+
|
153 |
+
return df
|
154 |
+
|
155 |
+
def calculate_composite_score(df):
|
156 |
+
df['composite_score'] = (
|
157 |
+
weights['information_density'] * df['information_density'] +
|
158 |
+
weights['unique_key_points'] * df['unique_key_points'] +
|
159 |
+
weights['strength_word_count'] * df['strength_word_count'] +
|
160 |
+
weights['weakness_word_count'] * df['weakness_word_count'] +
|
161 |
+
weights['discussion_word_count'] * df['discussion_word_count']
|
162 |
+
)
|
163 |
+
|
164 |
+
return df
|
165 |
+
|
166 |
+
def classify_review_quality(row):
|
167 |
+
if row['composite_score'] > 12:
|
168 |
+
return 'Excellent Review Quality'
|
169 |
+
elif row['composite_score'] < 3:
|
170 |
+
return 'Poor Review Quality'
|
171 |
+
else:
|
172 |
+
return 'Moderate Review Quality'
|
173 |
+
|
174 |
+
def determine_review_quality(df):
|
175 |
+
|
176 |
+
df['normalized_length'] = df['total_word_count'] / df['total_word_count'].max()
|
177 |
+
df['unique_insights_per_word'] = df['unique_key_points'] / df['normalized_length']
|
178 |
+
df['adjusted_argument_strength'] = df['argument_strength'] / (1 + df['sentence_complexity'])
|
179 |
+
|
180 |
+
df['review_quality'] = df.apply(classify_review_quality, axis=1)
|
181 |
+
|
182 |
+
return df
|
183 |
+
|
184 |
+
def heuristic_optimization(row):
|
185 |
+
suggestions = []
|
186 |
+
|
187 |
+
if row["strength_word_count"] > 100 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
188 |
+
suggestions.append("Summarize redundant strengths.")
|
189 |
+
elif row["strength_word_count"] < 50 and row["strength_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
190 |
+
suggestions.append("Add more impactful strengths.")
|
191 |
+
|
192 |
+
if row["weakness_word_count"] > 100 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
193 |
+
suggestions.append("Remove repetitive criticisms.")
|
194 |
+
elif row["weakness_word_count"] < 50 and row["weakness_argument_score"] < THRESHOLDS["adjusted_argument_strength"]:
|
195 |
+
suggestions.append("Add specific, actionable weaknesses.")
|
196 |
+
|
197 |
+
if row["discussion_word_count"] < 100 and row["information_density"] < THRESHOLDS["information_density"][0]:
|
198 |
+
suggestions.append("Elaborate with new insights or examples.")
|
199 |
+
elif row["discussion_word_count"] > 300 and row["information_density"] > THRESHOLDS["information_density"][1]:
|
200 |
+
suggestions.append("Summarize key discussion points.")
|
201 |
+
|
202 |
+
if row["normalized_length"] < THRESHOLDS["normalized_length"][0]:
|
203 |
+
suggestions.append("Expand sections for better coverage.")
|
204 |
+
elif row["normalized_length"] > THRESHOLDS["normalized_length"][1]:
|
205 |
+
suggestions.append("Condense content to improve readability.")
|
206 |
+
|
207 |
+
if row["unique_key_points"] < THRESHOLDS["unique_key_points"][0]:
|
208 |
+
suggestions.append("Add more unique insights.")
|
209 |
+
elif row["unique_key_points"] > THRESHOLDS["unique_key_points"][1]:
|
210 |
+
suggestions.append("Streamline ideas for clarity.")
|
211 |
+
|
212 |
+
if row["composite_score"] < THRESHOLDS["composite_score"]:
|
213 |
+
suggestions.append("Enhance clarity, evidence, and argumentation.")
|
214 |
+
|
215 |
+
if row["review_quality"] == "Low":
|
216 |
+
suggestions.append("Significant revisions required.")
|
217 |
+
elif row["review_quality"] == "Moderate":
|
218 |
+
suggestions.append("Minor refinements recommended.")
|
219 |
+
|
220 |
+
return suggestions
|
221 |
+
|
222 |
+
def pipeline(comment, abstract):
|
223 |
+
df = preprocess(comment, abstract)
|
224 |
+
df = calculate_composite_score(df)
|
225 |
+
df = determine_review_quality(df)
|
226 |
+
df["optimization_suggestions"] = df.apply(heuristic_optimization, axis=1)
|
227 |
+
return df["review_quality"][0], " ".join(df["optimization_suggestions"][0])
|
228 |
+
|
229 |
+
with gr.Blocks() as demo:
|
230 |
+
gr.Markdown("# Dynaic Length Optimization of Peer Review")
|
231 |
+
with gr.Row():
|
232 |
+
comment = gr.Textbox(label="Peer Review Comments")
|
233 |
+
abstract = gr.Textbox(label="Paper Abstract")
|
234 |
+
review_quality = gr.Textbox(label="Predicted Review Quality")
|
235 |
+
suggestions = gr.Textbox(label="Suggestions")
|
236 |
+
|
237 |
+
comment.change(fn=pipeline, inputs=[comment, abstract], outputs=[review_quality, suggestions])
|
238 |
+
|
239 |
+
demo.launch()
|