Tirath5504 commited on
Commit
854fe03
·
verified ·
1 Parent(s): d5f37b6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import string
4
+ import nltk
5
+ from nltk.tokenize import word_tokenize
6
+ from nltk.corpus import stopwords
7
+ from nltk.stem import WordNetLemmatizer
8
+ import tensorflow as tf
9
+ from tensorflow import keras
10
+ from keras import layers
11
+ from tensorflow.keras.preprocessing.text import Tokenizer
12
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
13
+ import joblib
14
+
15
+ nltk.download('stopwords')
16
+ nltk.download('omw-1.4')
17
+ nltk.download('wordnet')
18
+ nltk.download('punkt')
19
+
20
+ tokenizer, model = joblib.load("lstm_model.pkl")
21
+
22
+ def preprocess(text, tokenizer):
23
+ lemmatizer = WordNetLemmatizer()
24
+ vocab = set()
25
+ stop_words = set(stopwords.words('english'))
26
+ tokens = word_tokenize(text)
27
+ tokens = [word for word in tokens if word.lower() not in stop_words and word not in string.punctuation]
28
+ tokens = [lemmatizer.lemmatize(word.lower()) for word in tokens]
29
+ vocab.update(tokens)
30
+ preprocessed_text = ' '.join(tokens)
31
+ X = tokenizer.texts_to_sequences(preprocessed_text)
32
+ max_len = max(len(y) for y in X)
33
+ X = pad_sequences(X, maxlen=max_len)
34
+ return X
35
+
36
+ def predict(text):
37
+ X = preprocess(text, tokenizer)
38
+ pred = model.predict(X)
39
+ probabilities = np.mean(pred, axis=0)
40
+ final_class = np.argmax(probabilities)
41
+ if final_class == 0:
42
+ prediction = "The string is classified as hate speech."
43
+ else:
44
+ prediction = "The string is classified as normal speech."
45
+ return {"prediction": prediction, "probability": probabilities.tolist()}
46
+
47
+ iface = gr.Interface(
48
+ fn=predict,
49
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
50
+ outputs=[gr.outputs.Textbox(label="Prediction"), gr.outputs.Textbox(label="Probabilities")],
51
+ title="Hate Speech Classifier",
52
+ description="A classifier to detect hate speech in a given text.",
53
+ )
54
+
55
+ if __name__ == "__main__":
56
+ iface.launch()