File size: 4,470 Bytes
709d394
 
486a2f6
38fedf1
709d394
 
a13c01c
 
 
 
 
 
38fedf1
 
709d394
 
38fedf1
709d394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cdad52
 
 
 
 
4f6966f
b5aae38
 
 
 
 
a13c01c
 
 
 
b5aae38
acf224c
7fc9307
acf224c
 
7fc9307
a13c01c
 
 
 
 
1cdad52
 
4f6966f
 
 
 
 
1cdad52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import spaces
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

title = """
# Welcome to 🌟Tonic's🫡Command-R
🫡Command-R is a Large Language Model optimized for conversational interaction and long context tasks. It targets the “scalable” category of models that balance high performance with strong accuracy, enabling companies to move beyond proof of concept, and into production. 🫡Command-R boasts high precision on retrieval augmented generation (RAG) and tool use tasks, low latency and high throughput, a long 128k context, and strong capabilities across 10 key languages. You can build with this endpoint using✨StarCoder available here : [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b). You can also use 🫡Command-R by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/Command-R?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Torchon](https://github.com/Tonic-AI/Torchon)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

bnb_config = BitsAndBytesConfig(load_in_8bit=True)

model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

@spaces.GPU
def generate_response(user_input, max_new_tokens, temperature):
    messages = [{"role": "user", "content": user_input}]
    input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")

    # Generate tokens
    gen_tokens = model.generate(
        input_ids['input_ids'], 
        max_length=max_new_tokens + input_ids['input_ids'].shape[1],  # Adjusting max_length to account for input length
        do_sample=True, 
        temperature=temperature,
    )

    # Decode tokens to string
    gen_text = tokenizer.decode(gen_tokens[0])
    return gen_text

example_choices = {f"Example {i+1}": example for i, example in enumerate(examples)}

def load_example(choice):
    example = example_choices[choice]
    return example 
    
examples = [
        {"message": "What is the weather like today?", "max_new_tokens": 250, "temperature": 0.5},
        {"message": "Tell me a joke.", "max_new_tokens": 650, "temperature": 0.7},
        {"message": "Explain the concept of machine learning.", "max_new_tokens": 980, "temperature": 0.4}
]

with gr.Blocks() as demo:
    gr.Markdown(title)
    with gr.Row():
        max_new_tokens_slider = gr.Slider(minimum=100, maximum=4000, value=980, label="Max New Tokens")
        temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.3, label="Temperature")
    message_box = gr.Textbox(lines=2, label="Your Message")
    generate_button = gr.Button("Try🫡Command-R")
    output_box = gr.Textbox(label="🫡Command-R")

    generate_button.click(
        fn=generate_response,
        inputs=[message_box, max_new_tokens_slider, temperature_slider],
        outputs=output_box
    )
    example_dropdown = gr.Dropdown(label="🫡Load Example", choices=list(example_choices.keys()))
    example_button = gr.Button("🫡Load")
    example_button.click(
        fn=load_example,
        inputs=example_dropdown,
        outputs=[message_box, max_new_tokens_slider, temperature_slider]
    )

demo.launch()