USTC975's picture
create the app
43c34cc
import logging
import re
import uuid
from abc import abstractmethod
from argparse import Namespace
from typing import List, Union
from tenacity import RetryError
from .backends import IntelligenceBackend, load_backend
from .config import AgentConfig, BackendConfig, Configurable
from .message import SYSTEM_NAME, Message
# A special signal sent by the player to indicate that it is not possible to continue the conversation, and it requests to end the conversation.
# It contains a random UUID string to avoid being exploited by any of the players.
SIGNAL_END_OF_CONVERSATION = f"<<<<<<END_OF_CONVERSATION>>>>>>{uuid.uuid4()}"
class Agent(Configurable):
"""An abstract base class for all the agents in the chatArena environment."""
@abstractmethod
def __init__(
self, name: str, role_desc: str, global_prompt: str = None, *args, **kwargs
):
"""
Initialize the agent.
Parameters:
name (str): The name of the agent.
role_desc (str): Description of the agent's role.
global_prompt (str): A universal prompt that applies to all agents. Defaults to None.
"""
super().__init__(
name=name, role_desc=role_desc, global_prompt=global_prompt, **kwargs
)
self.name = name
self.role_desc = role_desc
self.global_prompt = global_prompt
class Player(Agent):
"""
The Player class represents a player in the chatArena environment.
A player can observe the environment
and perform an action (generate a response) based on the observation.
"""
def __init__(
self,
name: str,
role_desc: str,
backend: Union[BackendConfig, IntelligenceBackend],
global_prompt: str = None,
args: Namespace = None,
**kwargs,
):
"""
Initialize the player with a name, role description, backend, and a global prompt.
Parameters:
name (str): The name of the player.
role_desc (str): Description of the player's role.
backend (Union[BackendConfig, IntelligenceBackend]): The backend that will be used for decision making. It can be either a LLM backend or a Human backend.
global_prompt (str): A universal prompt that applies to all players. Defaults to None.
"""
self.data_dir = kwargs.pop("data_dir", None)
self.args = args
if isinstance(backend, BackendConfig):
backend_config = backend
backend_config['openai_client_type'] = args.openai_client_type
backend = load_backend(backend_config)
elif isinstance(backend, IntelligenceBackend):
backend_config = backend.to_config()
else:
raise ValueError(
f"backend must be a BackendConfig or an IntelligenceBackend, but got {type(backend)}"
)
assert (
name != SYSTEM_NAME
), f"Player name cannot be {SYSTEM_NAME}, which is reserved for the system."
# Register the fields in the _config
super().__init__(
name=name,
role_desc=role_desc,
backend=backend_config,
global_prompt=global_prompt,
**kwargs,
)
self.backend = backend
def to_config(self) -> AgentConfig:
return AgentConfig(
name=self.name,
role_desc=self.role_desc,
backend=self.backend.to_config(),
global_prompt=self.global_prompt,
)
def act(self, observation: List[Message]) -> str:
"""
Take an action based on the observation (Generate a response), which can later be parsed to actual actions that affect the game dynamics.
Parameters:
observation (List[Message]): The messages that the player has observed from the environment.
Returns:
str: The action (response) of the player.
"""
try:
response = self.backend.query(
agent_name=self.name,
role_desc=self.role_desc,
history_messages=observation,
global_prompt=self.global_prompt,
request_msg=None,
)
except RetryError as e:
err_msg = f"Agent {self.name} failed to generate a response. Error: {e.last_attempt.exception()}. Sending signal to end the conversation."
logging.warning(err_msg)
response = SIGNAL_END_OF_CONVERSATION + err_msg
return response
def __call__(self, observation: List[Message]) -> str:
return self.act(observation)
async def async_act(self, observation: List[Message]) -> str:
"""
Async version of act().
This is used when you want to generate a response asynchronously.
Parameters:
observation (List[Message]): The messages that the player has observed from the environment.
Returns:
str: The action (response) of the player.
"""
try:
response = self.backend.async_query(
agent_name=self.name,
role_desc=self.role_desc,
history_messages=observation,
global_prompt=self.global_prompt,
request_msg=None,
)
except RetryError as e:
err_msg = f"Agent {self.name} failed to generate a response. Error: {e.last_attempt.exception()}. Sending signal to end the conversation."
logging.warning(err_msg)
response = SIGNAL_END_OF_CONVERSATION + err_msg
return response
def reset(self):
"""
Reset the player's backend in case they are not stateless.
This is usually called at the end of each episode.
"""
self.backend.reset()
class Moderator(Player):
"""
The Moderator class represents a special type of player that moderates the conversation.
It is usually used as a component of the environment when the transition dynamics is conditioned on natural language that are not easy to parse programmatically.
"""
def __init__(
self,
role_desc: str,
backend: Union[BackendConfig, IntelligenceBackend],
terminal_condition: str,
global_prompt: str = None,
**kwargs,
):
"""
Initialize the moderator with a role description, backend, terminal condition, and a global prompt.
Parameters:
role_desc (str): Description of the moderator's role.
backend (Union[BackendConfig, IntelligenceBackend]): The backend that will be used for decision making.
terminal_condition (str): The condition that signifies the end of the conversation.
global_prompt (str): A universal prompt that applies to the moderator. Defaults to None.
"""
name = "Moderator"
super().__init__(
name=name,
role_desc=role_desc,
backend=backend,
global_prompt=global_prompt,
**kwargs,
)
self.terminal_condition = terminal_condition
def to_config(self) -> AgentConfig:
return AgentConfig(
name=self.name,
role_desc=self.role_desc,
backend=self.backend.to_config(),
terminal_condition=self.terminal_condition,
global_prompt=self.global_prompt,
)
def is_terminal(self, history: List[Message], *args, **kwargs) -> bool:
"""
Check whether an episode is terminated based on the terminal condition.
Parameters:
history (List[Message]): The conversation history.
Returns:
bool: True if the conversation is over, otherwise False.
"""
# If the last message is the signal, then the conversation is over
if history[-1].content == SIGNAL_END_OF_CONVERSATION:
return True
try:
request_msg = Message(
agent_name=self.name, content=self.terminal_condition, turn=-1
)
response = self.backend.query(
agent_name=self.name,
role_desc=self.role_desc,
history_messages=history,
global_prompt=self.global_prompt,
request_msg=request_msg,
*args,
**kwargs,
)
except RetryError as e:
logging.warning(
f"Agent {self.name} failed to generate a response. "
f"Error: {e.last_attempt.exception()}."
)
return True
if re.match(
r"yes|y|yea|yeah|yep|yup|sure|ok|okay|alright", response, re.IGNORECASE
):
# print(f"Decision: {response}. Conversation is ended by moderator.")
return True
else:
return False