Spaces:
Running
Running
import pickle | |
import pandas as pd | |
import shap | |
from shap.plots._force_matplotlib import draw_additive_plot | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# load the model from disk | |
loaded_model = pickle.load(open("h22_xgb.pkl", 'rb')) | |
# Setup SHAP | |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
# Create the main function for server | |
def main_func(ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance): | |
new_row = pd.DataFrame.from_dict({'ValueDiversity':ValueDiversity,'AdequateResources':AdequateResources, | |
'Voice':Voice,'GrowthAdvancement':GrowthAdvancement,'Workload':Workload, | |
'WorkLifeBalance':WorkLifeBalance}, orient = 'index').transpose() | |
prob = loaded_model.predict_proba(new_row) | |
shap_values = explainer(new_row) | |
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) | |
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) | |
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) | |
plt.tight_layout() | |
local_plot = plt.gcf() | |
plt.rcParams['figure.figsize'] = 6,4 | |
plt.close() | |
return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot | |
# Create the UI | |
title = "**Employee Turnover Predictor & Interpreter** 🪐" | |
description1 = """ | |
This app takes six inputs about employees' satisfaction with different aspects of their work (such as work-life balance, ...) and predicts whether the employee intends to stay with the employer or leave. There are two outputs from the app: 1- the predicted probability of stay or leave, 2- Shapley's force-plot which visualizes the extent to which each factor impacts the stay/ leave prediction. | |
""" | |
description2 = """ | |
To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. ✨ | |
""" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"## {title}") | |
# gr.Markdown("""![marketing](types-of-employee-turnover.jpg)""") | |
gr.Markdown(description1) | |
gr.Markdown("""---""") | |
gr.Markdown(description2) | |
gr.Markdown("""---""") | |
with gr.Row(): | |
with gr.Column(): | |
ValueDiversity = gr.Slider(label="ValueDiversity Score", minimum=1, maximum=5, value=4, step=.1) | |
AdequateResources = gr.Slider(label="AdequateResources Score", minimum=1, maximum=5, value=4, step=.1) | |
Voice = gr.Slider(label="Voice Score", minimum=1, maximum=5, value=4, step=.1) | |
GrowthAdvancement = gr.Slider(label="GrowthAdvancement Score", minimum=1, maximum=5, value=4, step=.1) | |
Workload = gr.Slider(label="Workload Score", minimum=1, maximum=5, value=4, step=.1) | |
WorkLifeBalance = gr.Slider(label="WorkLifeBalance Score", minimum=1, maximum=5, value=4, step=.1) | |
submit_btn = gr.Button("Analyze") | |
with gr.Column(visible=True,scale=1, min_width=600) as output_col: | |
label = gr.Label(label = "Predicted Label") | |
local_plot = gr.Plot(label = 'Shap:') | |
submit_btn.click( | |
main_func, | |
[ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance], | |
[label,local_plot], api_name="Employee_Turnover" | |
) | |
gr.Markdown("### Click on any of the examples below to see how it works:") | |
gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]], | |
[ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance], | |
[label,local_plot], main_func, cache_examples=True) | |
demo.launch() |