File size: 41,965 Bytes
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583aaab
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583aaab
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ee28e
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c976a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
import os
import gradio as gr
import argparse
import numpy as np
import torch
import einops
import copy
import math
import time
import random
import spaces
import re
import uuid

from gradio_imageslider import ImageSlider
from PIL import Image
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
from huggingface_hub import hf_hub_download
from pillow_heif import register_heif_opener

register_heif_opener()

max_64_bit_int = 2**32 - 1

hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")

parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True)#False
parser.add_argument("--use_image_slider", action='store_true', default=False)#False
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)#False
parser.add_argument("--use_tile_vae", action='store_true', default=True)#False
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()

if torch.cuda.device_count() > 0:
    SUPIR_device = 'cuda:0'

    # Load SUPIR
    model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
    if args.loading_half_params:
        model = model.half()
    if args.use_tile_vae:
        model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
    model = model.to(SUPIR_device)
    model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
    model.current_model = 'v0-Q'
    ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)

def check_upload(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")
    return gr.update(visible = True)

def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, max_64_bit_int)
    return seed

def reset():
    return [
        None,
        0,
        None,
        None,
        "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
        "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
        1,
        1024,
        1,
        2,
        50,
        -1.0,
        1.,
        default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
        True,
        random.randint(0, max_64_bit_int),
        5,
        1.003,
        "Wavelet",
        "fp32",
        "fp32",
        1.0,
        True,
        False,
        default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
        0.,
        "v0-Q",
        "input",
        6
    ]

def check(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")

@spaces.GPU(duration=420)
def stage1_process(
    input_image,
    gamma_correction,
    diff_dtype,
    ae_dtype
):
    print('stage1_process ==>>')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None
    torch.cuda.set_device(SUPIR_device)
    LQ = HWC3(np.array(Image.open(input_image)))
    LQ = fix_resize(LQ, 512)
    # stage1
    LQ = np.array(LQ) / 255 * 2 - 1
    LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    LQ = model.batchify_denoise(LQ, is_stage1=True)
    LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
    # gamma correction
    LQ = LQ / 255.0
    LQ = np.power(LQ, gamma_correction)
    LQ *= 255.0
    LQ = LQ.round().clip(0, 255).astype(np.uint8)
    print('<<== stage1_process')
    return LQ, gr.update(visible = True)

def stage2_process(*args, **kwargs):
    try:
        return restore_in_Xmin(*args, **kwargs)
    except Exception as e:
        print('Exception of type ' + str(type(e)))
        if type(e).__name__ == "<class 'gradio.exceptions.Error'>":
            print('Exception of name ' + type(e).__name__)
        raise e

def restore_in_Xmin(
    noisy_image,
    rotation,
    denoise_image,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    randomize_seed,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    output_format,
    allocation
):
    print("noisy_image:\n" + str(noisy_image))
    print("denoise_image:\n" + str(denoise_image))
    print("rotation: " + str(rotation))
    print("prompt: " + str(prompt))
    print("a_prompt: " + str(a_prompt))
    print("n_prompt: " + str(n_prompt))
    print("num_samples: " + str(num_samples))
    print("min_size: " + str(min_size))
    print("downscale: " + str(downscale))
    print("upscale: " + str(upscale))
    print("edm_steps: " + str(edm_steps))
    print("s_stage1: " + str(s_stage1))
    print("s_stage2: " + str(s_stage2))
    print("s_cfg: " + str(s_cfg))
    print("randomize_seed: " + str(randomize_seed))
    print("seed: " + str(seed))
    print("s_churn: " + str(s_churn))
    print("s_noise: " + str(s_noise))
    print("color_fix_type: " + str(color_fix_type))
    print("diff_dtype: " + str(diff_dtype))
    print("ae_dtype: " + str(ae_dtype))
    print("gamma_correction: " + str(gamma_correction))
    print("linear_CFG: " + str(linear_CFG))
    print("linear_s_stage2: " + str(linear_s_stage2))
    print("spt_linear_CFG: " + str(spt_linear_CFG))
    print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
    print("model_select: " + str(model_select))
    print("GPU time allocation: " + str(allocation) + " min")
    print("output_format: " + str(output_format))

    input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)

    if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
        gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
        return None, None, None, None

    if output_format == "input":
        if noisy_image is None:
            output_format = "png"
        else:
            output_format = input_format
    print("final output_format: " + str(output_format))

    if prompt is None:
        prompt = ""

    if a_prompt is None:
        a_prompt = ""

    if n_prompt is None:
        n_prompt = ""

    if prompt != "" and a_prompt != "":
        a_prompt = prompt + ", " + a_prompt
    else:
        a_prompt = prompt + a_prompt
    print("Final prompt: " + str(a_prompt))

    denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))

    if rotation == 90:
        denoise_image = np.array(list(zip(*denoise_image[::-1])))
    elif rotation == 180:
        denoise_image = np.array(list(zip(*denoise_image[::-1])))
        denoise_image = np.array(list(zip(*denoise_image[::-1])))
    elif rotation == -90:
        denoise_image = np.array(list(zip(*denoise_image))[::-1])

    if 1 < downscale:
        input_height, input_width, input_channel = denoise_image.shape
        denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))

    denoise_image = HWC3(denoise_image)

    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return [noisy_image, denoise_image], [denoise_image], None, gr.update(visible=True)

    if model_select != model.current_model:
        print('load ' + model_select)
        if model_select == 'v0-Q':
            model.load_state_dict(ckpt_Q, strict=False)
        elif model_select == 'v0-F':
            model.load_state_dict(ckpt_F, strict=False)
        model.current_model = model_select

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    # Allocation
    if allocation == 1:
        return restore_in_1min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 2:
        return restore_in_2min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 3:
        return restore_in_3min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 4:
        return restore_in_4min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 5:
        return restore_in_5min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 7:
        return restore_in_7min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 8:
        return restore_in_8min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 9:
        return restore_in_9min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    if allocation == 10:
        return restore_in_10min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )
    else:
        return restore_in_6min(
            noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
        )

@spaces.GPU(duration=59)
def restore_in_1min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=119)
def restore_in_2min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=179)
def restore_in_3min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=239)
def restore_in_4min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=299)
def restore_in_5min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=359)
def restore_in_6min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=419)
def restore_in_7min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=479)
def restore_in_8min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=539)
def restore_in_9min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=599)
def restore_in_10min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

def restore_on_gpu(
    noisy_image,
    input_image,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    randomize_seed,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    output_format,
    allocation
):
    start = time.time()
    print('restore ==>>')

    torch.cuda.set_device(SUPIR_device)

    with torch.no_grad():
        input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
        LQ = np.array(input_image) / 255.0
        LQ = np.power(LQ, gamma_correction)
        LQ *= 255.0
        LQ = LQ.round().clip(0, 255).astype(np.uint8)
        LQ = LQ / 255 * 2 - 1
        LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
        captions = ['']

        samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
                                    s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
                                    num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
                                    use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
                                    cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)

        x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
            0, 255).astype(np.uint8)
        results = [x_samples[i] for i in range(num_samples)]
    torch.cuda.empty_cache()

    # All the results have the same size
    input_height, input_width, input_channel = np.array(input_image).shape
    result_height, result_width, result_channel = np.array(results[0]).shape

    print('<<== restore')
    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
    "If you don't get the image you wanted, add more details in the « Image description ». " + \
    "Wait " + str(allocation) + " min before a new run to avoid quota penalty or use another computer. " + \
    "The image" + (" has" if len(results) == 1 else "s have") + " been generated in " + \
    ((str(hours) + " h, ") if hours != 0 else "") + \
    ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
    str(secondes) + " sec. " + \
    "The new image resolution is " + str(result_width) + \
    " pixels large and " + str(result_height) + \
    " pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
    print(information)
    try:
        print("Initial resolution: " + f'{input_width * input_height:,}')
        print("Final resolution: " + f'{result_width * result_height:,}')
        print("edm_steps: " + str(edm_steps))
        print("num_samples: " + str(num_samples))
        print("downscale: " + str(downscale))
        print("Estimated minutes: " + f'{(((result_width * result_height**(1/1.75)) * input_width * input_height * (edm_steps**(1/2)) * (num_samples**(1/2.5)))**(1/2.5)) / 25000:,}')
    except Exception as e:
        print('Exception of Estimation')

    # Only one image can be shown in the slider
    return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)

def load_and_reset(param_setting):
    print('load_and_reset ==>>')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None, None, None, None, None, None, None, None, None, None, None, None, None
    edm_steps = default_setting.edm_steps
    s_stage2 = 1.0
    s_stage1 = -1.0
    s_churn = 5
    s_noise = 1.003
    a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
               'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
               'detailing, hyper sharpness, perfect without deformations.'
    n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
               '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
               'signature, jpeg artifacts, deformed, lowres, over-smooth'
    color_fix_type = 'Wavelet'
    spt_linear_s_stage2 = 0.0
    linear_s_stage2 = False
    linear_CFG = True
    if param_setting == "Quality":
        s_cfg = default_setting.s_cfg_Quality
        spt_linear_CFG = default_setting.spt_linear_CFG_Quality
        model_select = "v0-Q"
    elif param_setting == "Fidelity":
        s_cfg = default_setting.s_cfg_Fidelity
        spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
        model_select = "v0-F"
    else:
        raise NotImplementedError
    gr.Info('The parameters are reset.')
    print('<<== load_and_reset')
    return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
        linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select

def log_information(result_gallery):
    print('log_information')
    if result_gallery is not None:
        for i, result in enumerate(result_gallery):
            print(result[0])

def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
    print('on_select_result')
    if result_gallery is not None:
        for i, result in enumerate(result_gallery):
            print(result[0])
    return [result_slider[0], result_gallery[evt.index][0]]

title_html = """
    <h1><center>SUPIR</center></h1>
    <big><center>Upscale your images up to x10 freely, without account, without watermark and download it</center></big>
    <center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
    
    <p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
    The content added by SUPIR is <b><u>imagination, not real-world information</u></b>.
    SUPIR is for beauty and illustration only.
    Most of the processes last few minutes.
    If you want to upscale AI-generated images, be noticed that <i>PixArt Sigma</i> space can directly generate 5984x5984 images.
    Due to Gradio issues, the generated image is slightly less satured than the original.
    Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
    You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
    
    <p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a> &emsp; <a href="http://supir.xpixel.group/">Project Page</a> &emsp; <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
    <p><center><a style="display:inline-block" href='https://github.com/Fanghua-Yu/SUPIR'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Fanghua-Yu/SUPIR?style=social"></a></center></p>
    """


claim_md = """
## **Piracy**
The images are not stored but the logs are saved during a month.
## **How to get SUPIR**
You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU.
You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai).
You can install _Pinokio_ on your computer and then install _SUPIR_ into it. It should be quite easy if you have an Nvidia GPU.
## **Terms of use**
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
## **License**
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
"""

# Gradio interface
with gr.Blocks() as interface:
    if torch.cuda.device_count() == 0:
        with gr.Row():
            gr.HTML("""
    <p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
    
    You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
    </big></big></big></p>
    """)
    gr.HTML(title_html)

    input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.jpg, *.gif, *.bmp, *.heic)", show_label=True, type="filepath", height=600, elem_id="image-input")
    rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
    with gr.Group():
        prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
        prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
        upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
        output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="input", interactive=True)
        allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min (discouraged)", 8], ["9 min (discouraged)", 9], ["10 min (discouraged)", 10]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=5, interactive=True)

    with gr.Accordion("Pre-denoising (optional)", open=False):
        gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
        denoise_button = gr.Button(value="Pre-denoise")
        denoise_image = gr.Image(label="Denoised image", show_label=True, type="filepath", sources=[], interactive = False, height=600, elem_id="image-s1")
        denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)

    with gr.Accordion("Advanced options", open=False):
        a_prompt = gr.Textbox(label="Additional image description",
                              info="Completes the main image description",
                              value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
                                    'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
                                    'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
                                    'hyper sharpness, perfect without deformations.',
                              lines=3)
        n_prompt = gr.Textbox(label="Negative image description",
                              info="Disambiguate by listing what the image does NOT represent",
                              value='painting, oil painting, illustration, drawing, art, sketch, anime, '
                                    'cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, '
                                    'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
                                    'deformed, lowres, over-smooth',
                              lines=3)
        edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
        num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
                                , value=1, step=1)
        min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
        downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
        with gr.Row():
            with gr.Column():
                model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
                                        interactive=True)
            with gr.Column():
                color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
                                          interactive=True)
        s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
                          value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
        s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
        s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
        s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
        s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
        with gr.Row():
            with gr.Column():
                linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
                spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
                                                maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
            with gr.Column():
                linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
                spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
                                                maximum=1., value=0., step=0.05)
            with gr.Column():
                diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
                                      interactive=True)
            with gr.Column():
                ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
                                    interactive=True)
        randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
        seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
        with gr.Group():
            param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value = "Quality")
            restart_button = gr.Button(value="Apply presetting")

    with gr.Column():
        diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id = "process_button")
        reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)

        restore_information = gr.HTML(value = "Restart the process to get another result.", visible = False)
        result_slider = ImageSlider(label = 'Comparator', show_label = False, interactive = False, elem_id = "slider1", show_download_button = False)
        result_gallery = gr.Gallery(label = 'Downloadable results', show_label = True, interactive = False, elem_id = "gallery1")

    gr.Examples(
        examples = [
                [
                    "./Examples/Example1.png",
                    0,
                    None,
                    "Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
                    "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
                    "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
                    2,
                    1024,
                    1,
                    8,
                    200,
                    -1,
                    1,
                    7.5,
                    False,
                    42,
                    5,
                    1.003,
                    "AdaIn",
                    "fp16",
                    "bf16",
                    1.0,
                    True,
                    4,
                    False,
                    0.,
                    "v0-Q",
                    "input",
                    5
                ],
                [
                    "./Examples/Example2.jpeg",
                    0,
                    None,
                    "La cabeza de un gato atigrado, en una casa, fotorrealista, 8k, extremadamente detallada",
                    "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
                    "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
                    1,
                    1024,
                    1,
                    1,
                    200,
                    -1,
                    1,
                    7.5,
                    False,
                    42,
                    5,
                    1.003,
                    "Wavelet",
                    "fp16",
                    "bf16",
                    1.0,
                    True,
                    4,
                    False,
                    0.,
                    "v0-Q",
                    "input",
                    4
                ],
                [
                    "./Examples/Example3.webp",
                    0,
                    None,
                    "A red apple",
                    "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
                    "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
                    1,
                    1024,
                    1,
                    1,
                    200,
                    -1,
                    1,
                    7.5,
                    False,
                    42,
                    5,
                    1.003,
                    "Wavelet",
                    "fp16",
                    "bf16",
                    1.0,
                    True,
                    4,
                    False,
                    0.,
                    "v0-Q",
                    "input",
                    4
                ],
                [
                    "./Examples/Example3.webp",
                    0,
                    None,
                    "A red marble",
                    "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
                    "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
                    1,
                    1024,
                    1,
                    1,
                    200,
                    -1,
                    1,
                    7.5,
                    False,
                    42,
                    5,
                    1.003,
                    "Wavelet",
                    "fp16",
                    "bf16",
                    1.0,
                    True,
                    4,
                    False,
                    0.,
                    "v0-Q",
                    "input",
                    4
                ],
            ],
        run_on_click = True,
        fn = stage2_process,
	    inputs = [
            input_image,
            rotation,
            denoise_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            randomize_seed,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            output_format,
            allocation
        ],
	    outputs = [
            result_slider,
            result_gallery,
            restore_information,
            reset_btn
        ],
        cache_examples = False,
    )

    with gr.Row():
        gr.Markdown(claim_md)
    
    input_image.upload(fn = check_upload, inputs = [
        input_image
    ], outputs = [
        rotation
    ], queue = False, show_progress = False)

    denoise_button.click(fn = check, inputs = [
        input_image
    ], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
        input_image,
        gamma_correction,
        diff_dtype,
        ae_dtype
    ], outputs=[
        denoise_image,
        denoise_information
    ])

    diffusion_button.click(fn = update_seed, inputs = [
        randomize_seed,
        seed
    ], outputs = [
        seed
    ], queue = False, show_progress = False).then(fn = check, inputs = [
        input_image
    ], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
        input_image,
        rotation,
        denoise_image,
        prompt,
        a_prompt,
        n_prompt,
        num_samples,
        min_size,
        downscale,
        upscale,
        edm_steps,
        s_stage1,
        s_stage2,
        s_cfg,
        randomize_seed,
        seed,
        s_churn,
        s_noise,
        color_fix_type,
        diff_dtype,
        ae_dtype,
        gamma_correction,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select,
        output_format,
        allocation
    ], outputs = [
        result_slider,
        result_gallery,
        restore_information,
        reset_btn
    ]).success(fn = log_information, inputs = [
        result_gallery
    ], outputs = [], queue = False, show_progress = False)

    result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
    result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)

    restart_button.click(fn = load_and_reset, inputs = [
        param_setting
    ], outputs = [
        edm_steps,
        s_cfg,
        s_stage2,
        s_stage1,
        s_churn,
        s_noise,
        a_prompt,
        n_prompt,
        color_fix_type,
        linear_CFG,
        linear_s_stage2,
        spt_linear_CFG,
        spt_linear_s_stage2,
        model_select
    ])

    reset_btn.click(fn = reset, inputs = [], outputs = [
            input_image,
            rotation,
            denoise_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            randomize_seed,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            output_format,
            allocation
        ], queue = False, show_progress = False)
        
    interface.queue(10).launch()