1stproject / app.py
V8055's picture
Create app.py
a6a2244 verified
raw
history blame
6.36 kB
# app.py
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import plotly.express as px
import plotly.graph_objects as go
import seaborn as sns
import matplotlib.pyplot as plt
class IrisPredictor:
def __init__(self):
self.iris = load_iris()
self.df = pd.DataFrame(data=np.c_[self.iris['data'], self.iris['target']],
columns=self.iris['feature_names'] + ['target'])
self.models = {
'Logistic Regression': LogisticRegression(),
'Decision Tree': DecisionTreeClassifier(),
'Random Forest': RandomForestClassifier()
}
self.X = self.df.drop('target', axis=1)
self.y = self.df['target']
self.scaler = StandardScaler()
def preprocess_data(self):
# Split the data
X_train, X_test, y_train, y_test = train_test_split(
self.X, self.y, test_size=0.2, random_state=42
)
# Scale the features
X_train_scaled = self.scaler.fit_transform(X_train)
X_test_scaled = self.scaler.transform(X_test)
return X_train_scaled, X_test_scaled, y_train, y_test
def train_model(self, model_name):
X_train_scaled, X_test_scaled, y_train, y_test = self.preprocess_data()
# Train model
model = self.models[model_name]
model.fit(X_train_scaled, y_train)
# Make predictions
y_pred = model.predict(X_test_scaled)
# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
return {
'model': model,
'accuracy': accuracy,
'confusion_matrix': conf_matrix,
'classification_report': class_report,
'X_test': X_test_scaled,
'y_test': y_test,
'y_pred': y_pred
}
def plot_confusion_matrix(self, conf_matrix):
fig = px.imshow(conf_matrix,
labels=dict(x="Predicted", y="Actual"),
x=['Setosa', 'Versicolor', 'Virginica'],
y=['Setosa', 'Versicolor', 'Virginica'],
title="Confusion Matrix")
return fig
def plot_feature_importance(self, model_name, model):
if model_name == 'Logistic Regression':
importance = abs(model.coef_[0])
else:
importance = model.feature_importances_
fig = px.bar(x=self.X.columns, y=importance,
title=f"Feature Importance - {model_name}",
labels={'x': 'Features', 'y': 'Importance'})
return fig
def predict_single_sample(self, model, features):
# Scale features
scaled_features = self.scaler.transform([features])
# Make prediction
prediction = model.predict(scaled_features)
probabilities = model.predict_proba(scaled_features)
return prediction[0], probabilities[0]
def main():
st.title("๐ŸŒธ Iris Flower Prediction App")
st.write("""
This app predicts the Iris flower type based on its features.
Choose a model and see how it performs!
""")
# Initialize predictor
predictor = IrisPredictor()
# Model selection
st.sidebar.header("Model Selection")
model_name = st.sidebar.selectbox(
"Choose a model",
list(predictor.models.keys())
)
# Train model and show results
if st.sidebar.button("Train Model"):
with st.spinner("Training model..."):
results = predictor.train_model(model_name)
# Display metrics
st.header("Model Performance")
st.metric("Accuracy", f"{results['accuracy']:.2%}")
# Display confusion matrix
st.subheader("Confusion Matrix")
conf_matrix_fig = predictor.plot_confusion_matrix(results['confusion_matrix'])
st.plotly_chart(conf_matrix_fig)
# Display feature importance
st.subheader("Feature Importance")
importance_fig = predictor.plot_feature_importance(model_name, results['model'])
st.plotly_chart(importance_fig)
# Display classification report
st.subheader("Classification Report")
st.text(results['classification_report'])
# Store the trained model in session state
st.session_state['trained_model'] = results['model']
# Make predictions
st.header("Make Predictions")
col1, col2 = st.columns(2)
with col1:
sepal_length = st.slider("Sepal Length", 4.0, 8.0, 5.4)
sepal_width = st.slider("Sepal Width", 2.0, 4.5, 3.4)
with col2:
petal_length = st.slider("Petal Length", 1.0, 7.0, 4.7)
petal_width = st.slider("Petal Width", 0.1, 2.5, 1.4)
if st.button("Predict"):
if 'trained_model' in st.session_state:
features = [sepal_length, sepal_width, petal_length, petal_width]
prediction, probabilities = predictor.predict_single_sample(
st.session_state['trained_model'], features
)
# Display prediction
iris_types = ['Setosa', 'Versicolor', 'Virginica']
st.success(f"Predicted Iris Type: {iris_types[int(prediction)]}")
# Display probability distribution
st.subheader("Prediction Probabilities")
prob_fig = px.bar(x=iris_types, y=probabilities,
title="Prediction Probability Distribution",
labels={'x': 'Iris Type', 'y': 'Probability'})
st.plotly_chart(prob_fig)
else:
st.warning("Please train a model first!")
if __name__ == "__main__":
main()