Spaces:
Runtime error
Runtime error
File size: 1,883 Bytes
4bf3dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# This Gradio app uses the KolorsPipeline from the diffusers library to generate images based on a given prompt.
import gradio as gr
import torch
from diffusers import KolorsPipeline
# Load the KolorsPipeline model
pipe = KolorsPipeline.from_pretrained(
"Kwai-Kolors/Kolors-diffusers",
torch_dtype=torch.float16,
variant="fp16"
).to("cuda")
# Define the function to generate an image based on the prompt
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps, seed):
generator = torch.Generator(pipe.device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image
# Create the Gradio interface
with gr.Blocks() as demo:
with gr.Row():
prompt_input = gr.Textbox(label="Prompt", value="一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着'可图'")
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="")
with gr.Row():
guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, value=5.0, step=0.1)
num_inference_steps_slider = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, value=50, step=1)
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=100000, value=66, step=1)
generate_button = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
# Define the event listener for the generate button
generate_button.click(
fn=generate_image,
inputs=[prompt_input, negative_prompt_input, guidance_scale_slider, num_inference_steps_slider, seed_slider],
outputs=output_image
)
# Launch the Gradio app
demo.launch(show_error=True) |