Spaces:
Runtime error
Runtime error
File size: 2,646 Bytes
a876cd3 4dd8ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate
from get_embedding_function import get_embedding_function
from langchain_groq import ChatGroq
import chainlit as cl
app = FastAPI()
# Configurar variáveis de ambiente
os.environ["OPENAI_API_BASE"] = 'https://api.groq.com/openai/v1'
os.environ["OPENAI_MODEL_NAME"] = 'llama3-8b-8192'
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
CHROMA_PATH = "chroma"
PROMPT_TEMPLATE = """
You are 'Vasu', an experienced professor with extensive knowledge in Cryptocurrency, Artificial Intelligence, and related projects.
Provide relevant 'Links' "http://", but include links only when they are particularly useful for understanding the response.
Answer the question based solely on the following context: {context}
Based on the above context, answer the question: {question}.
"""
class QueryRequest(BaseModel):
query: str
class QueryResponse(BaseModel):
response: str
sources: List[str]
def query_rag(query_text: str):
# Configurar o modelo Groq
chat_groq = ChatGroq(temperature=0, model_name="llama3-8b-8192")
# Preparar o DB
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# Buscar no DB
results = db.similarity_search_with_score(query_text, k=10)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
# Obter a resposta usando Groq
response_text = chat_groq.invoke(prompt).content
sources = [doc.metadata.get("id", None) for doc, _score in results]
return response_text, sources
@app.post("/query", response_model=QueryResponse)
async def query_api(request: QueryRequest):
try:
response_text, sources = query_rag(request.query)
return QueryResponse(response=response_text, sources=sources)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@cl.on_message
async def chainlit_main(message: cl.Message):
query_text = message.content # Obter a mensagem do usuário a partir do Chainlit
response_text = query_rag(query_text)
# Enviar a resposta de volta para o Chainlit
await cl.Message(
content=f"{response_text}",
).send()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|