Spaces:
Runtime error
Runtime error
import os | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from typing import List | |
from langchain_community.vectorstores import Chroma | |
from langchain.prompts import ChatPromptTemplate | |
from get_embedding_function import get_embedding_function | |
from langchain_groq import ChatGroq | |
import chainlit as cl | |
app = FastAPI() | |
# Configurar variáveis de ambiente | |
os.environ["OPENAI_API_BASE"] = 'https://api.groq.com/openai/v1' | |
os.environ["OPENAI_MODEL_NAME"] = 'llama3-8b-8192' | |
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY") | |
CHROMA_PATH = "chroma" | |
PROMPT_TEMPLATE = """ | |
You are 'Vasu', an experienced professor with extensive knowledge in Cryptocurrency, Artificial Intelligence, and related projects. | |
Provide relevant 'Links' "http://", but include links only when they are particularly useful for understanding the response. | |
Answer the question based solely on the following context: {context} | |
Based on the above context, answer the question: {question}. | |
""" | |
class QueryRequest(BaseModel): | |
query: str | |
class QueryResponse(BaseModel): | |
response: str | |
sources: List[str] | |
def query_rag(query_text: str): | |
# Configurar o modelo Groq | |
chat_groq = ChatGroq(temperature=0, model_name="llama3-8b-8192") | |
# Preparar o DB | |
embedding_function = get_embedding_function() | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) | |
# Buscar no DB | |
results = db.similarity_search_with_score(query_text, k=10) | |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) | |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) | |
prompt = prompt_template.format(context=context_text, question=query_text) | |
# Obter a resposta usando Groq | |
response_text = chat_groq.invoke(prompt).content | |
sources = [doc.metadata.get("id", None) for doc, _score in results] | |
return response_text, sources | |
async def query_api(request: QueryRequest): | |
try: | |
response_text, sources = query_rag(request.query) | |
return QueryResponse(response=response_text, sources=sources) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def chainlit_main(message: cl.Message): | |
query_text = message.content # Obter a mensagem do usuário a partir do Chainlit | |
response_text = query_rag(query_text) | |
# Enviar a resposta de volta para o Chainlit | |
await cl.Message( | |
content=f"{response_text}", | |
).send() | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |