Spaces:
Running
Running
VinayHajare
commited on
Commit
โข
34bb902
1
Parent(s):
8a3322f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ocr_processor import OCRProcessor
|
3 |
+
import tempfile
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import json
|
7 |
+
|
8 |
+
# Page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="OCR Hub",
|
11 |
+
page_icon="๐",
|
12 |
+
layout="wide",
|
13 |
+
initial_sidebar_state="expanded"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Custom CSS for better UI
|
17 |
+
st.markdown("""
|
18 |
+
<style>
|
19 |
+
.stApp {
|
20 |
+
max-width: 100%;
|
21 |
+
padding: 1rem;
|
22 |
+
}
|
23 |
+
.main {
|
24 |
+
background-color: #f8f9fa;
|
25 |
+
}
|
26 |
+
.stButton button {
|
27 |
+
width: 100%;
|
28 |
+
border-radius: 5px;
|
29 |
+
height: 3em;
|
30 |
+
background-color: #4CAF50;
|
31 |
+
color: white;
|
32 |
+
}
|
33 |
+
.stSelectbox {
|
34 |
+
margin-bottom: 1rem;
|
35 |
+
}
|
36 |
+
.upload-text {
|
37 |
+
text-align: center;
|
38 |
+
padding: 2rem;
|
39 |
+
border: 2px dashed #ccc;
|
40 |
+
border-radius: 10px;
|
41 |
+
background-color: #ffffff;
|
42 |
+
}
|
43 |
+
.stImage {
|
44 |
+
border-radius: 10px;
|
45 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
46 |
+
}
|
47 |
+
.gallery {
|
48 |
+
display: grid;
|
49 |
+
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
|
50 |
+
gap: 1rem;
|
51 |
+
padding: 1rem;
|
52 |
+
}
|
53 |
+
.gallery-item {
|
54 |
+
border: 1px solid #ddd;
|
55 |
+
border-radius: 8px;
|
56 |
+
padding: 0.5rem;
|
57 |
+
background: white;
|
58 |
+
}
|
59 |
+
</style>
|
60 |
+
""", unsafe_allow_html=True)
|
61 |
+
|
62 |
+
def get_available_models():
|
63 |
+
return ["llava:7b", "MiniCPM-V","llama3.2-vision:11b"]
|
64 |
+
|
65 |
+
def process_single_image(processor, image_path, format_type, enable_preprocessing):
|
66 |
+
"""Process a single image and return the result"""
|
67 |
+
try:
|
68 |
+
result = processor.process_image(
|
69 |
+
image_path=image_path,
|
70 |
+
format_type=format_type,
|
71 |
+
preprocess=enable_preprocessing
|
72 |
+
)
|
73 |
+
return result
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error processing image: {str(e)}"
|
76 |
+
|
77 |
+
def process_batch_images(processor, image_paths, format_type, enable_preprocessing):
|
78 |
+
"""Process multiple images and return results"""
|
79 |
+
try:
|
80 |
+
results = processor.process_batch(
|
81 |
+
input_path=image_paths,
|
82 |
+
format_type=format_type,
|
83 |
+
preprocess=enable_preprocessing
|
84 |
+
)
|
85 |
+
return results
|
86 |
+
except Exception as e:
|
87 |
+
return {"error": str(e)}
|
88 |
+
|
89 |
+
def main():
|
90 |
+
st.title("๐ OCR Hub")
|
91 |
+
st.markdown("<p style='text-align: center; color: #666;'>Powered by Ollama Vision Models</p>", unsafe_allow_html=True)
|
92 |
+
|
93 |
+
# Sidebar controls
|
94 |
+
with st.sidebar:
|
95 |
+
st.header("๐ฎ Controls")
|
96 |
+
|
97 |
+
selected_model = st.selectbox(
|
98 |
+
"๐ค Select Vision Model",
|
99 |
+
get_available_models(),
|
100 |
+
index=0,
|
101 |
+
)
|
102 |
+
|
103 |
+
format_type = st.selectbox(
|
104 |
+
"๐ Output Format",
|
105 |
+
["markdown", "text", "json", "structured", "key_value"],
|
106 |
+
help="Choose how you want the extracted text to be formatted"
|
107 |
+
)
|
108 |
+
|
109 |
+
max_workers = st.slider(
|
110 |
+
"๐ Parallel Processing",
|
111 |
+
min_value=1,
|
112 |
+
max_value=8,
|
113 |
+
value=2,
|
114 |
+
help="Number of images to process in parallel (for batch processing)"
|
115 |
+
)
|
116 |
+
|
117 |
+
enable_preprocessing = st.checkbox(
|
118 |
+
"๐ Enable Preprocessing",
|
119 |
+
value=True,
|
120 |
+
help="Apply image enhancement and preprocessing"
|
121 |
+
)
|
122 |
+
|
123 |
+
st.markdown("---")
|
124 |
+
|
125 |
+
# Model info box
|
126 |
+
if selected_model == "llava:7b":
|
127 |
+
st.info("LLaVA 7B: Efficient vision-language model optimized for real-time processing")
|
128 |
+
elif selected_model == "MiniCPM-V":
|
129 |
+
st.info("MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video, outperforms GPT-4o mini, Gemini 1.5 Pro and Claude 3.5 Sonnet")
|
130 |
+
else:
|
131 |
+
st.info("Llama 3.2 Vision: Advanced model with high accuracy for complex text extraction")
|
132 |
+
|
133 |
+
# Initialize OCR Processor
|
134 |
+
processor = OCRProcessor(model_name=selected_model, max_workers=max_workers)
|
135 |
+
|
136 |
+
# Main content area with tabs
|
137 |
+
tab1, tab2 = st.tabs(["๐ธ Image Processing", "โน๏ธ About"])
|
138 |
+
|
139 |
+
with tab1:
|
140 |
+
# File upload area with multiple file support
|
141 |
+
uploaded_files = st.file_uploader(
|
142 |
+
"Drop your images here",
|
143 |
+
type=['png', 'jpg', 'jpeg', 'tiff', 'bmp', 'pdf'],
|
144 |
+
accept_multiple_files=True,
|
145 |
+
help="Supported formats: PNG, JPG, JPEG, TIFF, BMP, PDF"
|
146 |
+
)
|
147 |
+
|
148 |
+
if uploaded_files:
|
149 |
+
# Create a temporary directory for uploaded files
|
150 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
151 |
+
image_paths = []
|
152 |
+
|
153 |
+
# Save uploaded files and collect paths
|
154 |
+
for uploaded_file in uploaded_files:
|
155 |
+
temp_path = os.path.join(temp_dir, uploaded_file.name)
|
156 |
+
with open(temp_path, "wb") as f:
|
157 |
+
f.write(uploaded_file.getvalue())
|
158 |
+
image_paths.append(temp_path)
|
159 |
+
|
160 |
+
# Display images in a gallery
|
161 |
+
st.subheader(f"๐ธ Input Images ({len(uploaded_files)} files)")
|
162 |
+
cols = st.columns(min(len(uploaded_files), 4))
|
163 |
+
for idx, uploaded_file in enumerate(uploaded_files):
|
164 |
+
with cols[idx % 4]:
|
165 |
+
image = Image.open(uploaded_file)
|
166 |
+
st.image(image, use_container_width=True, caption=uploaded_file.name)
|
167 |
+
|
168 |
+
# Process button
|
169 |
+
if st.button("๐ Process Images"):
|
170 |
+
with st.spinner("Processing images..."):
|
171 |
+
if len(image_paths) == 1:
|
172 |
+
# Single image processing
|
173 |
+
result = process_single_image(
|
174 |
+
processor,
|
175 |
+
image_paths[0],
|
176 |
+
format_type,
|
177 |
+
enable_preprocessing
|
178 |
+
)
|
179 |
+
st.subheader("๐ Extracted Text")
|
180 |
+
st.markdown(result)
|
181 |
+
|
182 |
+
# Download button for single result
|
183 |
+
st.download_button(
|
184 |
+
"๐ฅ Download Result",
|
185 |
+
result,
|
186 |
+
file_name=f"ocr_result.{format_type}",
|
187 |
+
mime="text/plain"
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
# Batch processing
|
191 |
+
results = process_batch_images(
|
192 |
+
processor,
|
193 |
+
image_paths,
|
194 |
+
format_type,
|
195 |
+
enable_preprocessing
|
196 |
+
)
|
197 |
+
|
198 |
+
# Display statistics
|
199 |
+
st.subheader("๐ Processing Statistics")
|
200 |
+
col1, col2, col3 = st.columns(3)
|
201 |
+
with col1:
|
202 |
+
st.metric("Total Images", results['statistics']['total'])
|
203 |
+
with col2:
|
204 |
+
st.metric("Successful", results['statistics']['successful'])
|
205 |
+
with col3:
|
206 |
+
st.metric("Failed", results['statistics']['failed'])
|
207 |
+
|
208 |
+
# Display results
|
209 |
+
st.subheader("๐ Extracted Text")
|
210 |
+
for file_path, text in results['results'].items():
|
211 |
+
with st.expander(f"Result: {os.path.basename(file_path)}"):
|
212 |
+
st.markdown(text)
|
213 |
+
|
214 |
+
# Display errors if any
|
215 |
+
if results['errors']:
|
216 |
+
st.error("โ ๏ธ Some files had errors:")
|
217 |
+
for file_path, error in results['errors'].items():
|
218 |
+
st.warning(f"{os.path.basename(file_path)}: {error}")
|
219 |
+
|
220 |
+
# Download all results as JSON
|
221 |
+
if st.button("๐ฅ Download All Results"):
|
222 |
+
json_results = json.dumps(results, indent=2)
|
223 |
+
st.download_button(
|
224 |
+
"๐ฅ Download Results JSON",
|
225 |
+
json_results,
|
226 |
+
file_name="ocr_results.json",
|
227 |
+
mime="application/json"
|
228 |
+
)
|
229 |
+
|
230 |
+
with tab2:
|
231 |
+
st.header("About OCR Hub")
|
232 |
+
st.markdown("""
|
233 |
+
This application uses state-of-the-art vision language models through Ollama to extract text from images.
|
234 |
+
|
235 |
+
### Features:
|
236 |
+
- ๐ผ๏ธ Support for multiple image formats
|
237 |
+
- ๐ฆ Batch processing capability
|
238 |
+
- ๐ Parallel processing
|
239 |
+
- ๐ Image preprocessing and enhancement
|
240 |
+
- ๐ Multiple output formats
|
241 |
+
- ๐ฅ Easy result download
|
242 |
+
|
243 |
+
### Models:
|
244 |
+
- **LLaVA 7B**: Efficient vision-language model for real-time processing
|
245 |
+
- **Llama 3.2 Vision**: Advanced model with high accuracy for complex documents
|
246 |
+
- **MiniCPM-V 2.6**: Process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344)
|
247 |
+
""")
|
248 |
+
|
249 |
+
if __name__ == "__main__":
|
250 |
+
main()
|