|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import AutoProcessor, pipeline, BarkModel |
|
|
|
ASR_MODEL_NAME = "VinayHajare/whisper-small-finetuned-common-voice-mr" |
|
TTS_MODEL_NAME = "suno/bark-small" |
|
BATCH_SIZE = 8 |
|
voices = { |
|
"male" : "v2/en_speaker_6", |
|
"female" : "v2/en_speaker_9" |
|
} |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=30,device=device) |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("suno/bark-small") |
|
model = BarkModel.from_pretrained("suno/bark-small").to(device) |
|
sampling_rate = model.generation_config.sample_rate |
|
|
|
def translate(audio): |
|
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) |
|
return outputs["text"] |
|
|
|
def synthesise(text, voice_preset): |
|
inputs = processor(text=text, return_tensors="pt",voice_preset=voice_preset) |
|
speech = model.generate(**inputs.to(device)) |
|
return speech[0] |
|
|
|
def speech_to_speech_translation(audio, voice): |
|
voice_preset = None |
|
translated_text = translate(audio) |
|
print(translated_text) |
|
if voice == "Female": |
|
voice_preset = voices["female"] |
|
else: |
|
voice_preset = voices["male"] |
|
synthesised_speech = synthesise(translated_text, voice_preset) |
|
synthesised_speech = (synthesised_speech.cpu().numpy() * 32767).astype(np.int16) |
|
return sampling_rate, synthesised_speech |
|
|
|
title = "Cascaded STST for Marathi to English" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any Marathi to target speech in English. Demo uses OpenAI's [Whisper Small](https://huggingface.co/VinayHajare/whisper-small-finetuned-common-voice-mr) model for speech translation, and Suno's |
|
[Bark-large](https://huggingface.co/suno/bark-small) model for text-to-speech: |
|
|
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=[gr.Audio(sources="microphone", type="filepath"), |
|
gr.Radio(["Male", "Female"], label="Voice", value="Male")], |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
allow_flagging="never" |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=[gr.Audio(sources="upload", type="filepath"), |
|
gr.Radio(["Male", "Female"], label="Voice", value="Male")], |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
allow_flagging="never" |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.queue(max_size=10) |
|
demo.launch() |