VinayHajare commited on
Commit
34e015f
·
1 Parent(s): db8009d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from transformers import AutoProcessor, pipeline, BarkModel
5
+
6
+ ASR_MODEL_NAME = "VinayHajare/whisper-small-finetuned-common-voice-mr"
7
+ TTS_MODEL_NAME = "suno/bark-small"
8
+ BATCH_SIZE = 8
9
+ voices = {
10
+ "male" : "v2/en_speaker_6",
11
+ "female" : "v2/en_speaker_9"
12
+ }
13
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
+
15
+ # load speech translation checkpoint
16
+ asr_pipe = pipeline("automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=30,device=device)
17
+
18
+ # load text-to-speech checkpoint
19
+ processor = AutoProcessor.from_pretrained("suno/bark-small")
20
+ model = BarkModel.from_pretrained("suno/bark-small").to(device)
21
+ sampling_rate = model.generation_config.sample_rate
22
+
23
+ def translate(audio):
24
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
25
+ return outputs["text"]
26
+
27
+ def synthesise(text, voice_preset):
28
+ inputs = processor(text=text, return_tensors="pt",voice_preset=voice_preset)
29
+ speech = model.generate(**inputs.to(device))
30
+ return speech[0]
31
+
32
+ def speech_to_speech_translation(audio, voice):
33
+ voice_preset = None
34
+ translated_text = translate(audio)
35
+ print(translated_text)
36
+ if voice == "Female":
37
+ voice_preset = voices["female"]
38
+ else:
39
+ voice_preset = voices["male"]
40
+ synthesised_speech = synthesise(translated_text, voice_preset)
41
+ synthesised_speech = (synthesised_speech.cpu().numpy() * 32767).astype(np.int16)
42
+ return sampling_rate, synthesised_speech
43
+
44
+ title = "Cascaded STST for Marathi to English"
45
+ description = """
46
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any Marathi to target speech in English. Demo uses OpenAI's [Whisper Small](https://huggingface.co/VinayHajare/whisper-small-finetuned-common-voice-mr) model for speech translation, and Suno's
47
+ [Bark-large](https://huggingface.co/suno/bark-small) model for text-to-speech:
48
+
49
+ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
50
+ """
51
+ demo = gr.Blocks()
52
+
53
+ mic_translate = gr.Interface(
54
+ fn=speech_to_speech_translation,
55
+ inputs=[gr.Audio(source="microphone", type="filepath"),
56
+ gr.inputs.Radio(["Male", "Female"], label="Voice", default="Male")],
57
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
58
+ title=title,
59
+ description=description,
60
+ allow_flagging="never"
61
+ )
62
+
63
+ file_translate = gr.Interface(
64
+ fn=speech_to_speech_translation,
65
+ inputs=[gr.Audio(source="upload", type="filepath"),
66
+ gr.inputs.Radio(["Male", "Female"], label="Voice", default="Male")],
67
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
68
+ title=title,
69
+ description=description,
70
+ allow_flagging="never"
71
+ )
72
+
73
+ with demo:
74
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
75
+
76
+ demo.launch(enable_queue=True)