Spaces:
Running
Running
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import streamlit as st | |
from PIL import Image | |
import os | |
def load_model_cache(): | |
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True | |
tokenizer_pl = T5Tokenizer.from_pretrained( | |
"Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token | |
) | |
model_pl = T5ForConditionalGeneration.from_pretrained( | |
"Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token | |
) | |
model_det_pl = T5ForConditionalGeneration.from_pretrained( | |
"Voicelab/vlt5-base-rfc-detector-1.0", use_auth_token=auth_token | |
) | |
return tokenizer_pl, model_pl, model_det_pl | |
img_full = Image.open("images/vl-logo-nlp-blue.png") | |
img_short = Image.open("images/sVL-NLP-short.png") | |
img_favicon = Image.open("images/favicon_vl.png") | |
max_length: int = 5000 | |
cache_size: int = 100 | |
st.set_page_config( | |
page_title="DEMO - Reason for Contact generation", | |
page_icon=img_favicon, | |
initial_sidebar_state="expanded", | |
) | |
tokenizer_pl, model_pl, model_det_pl = load_model_cache() | |
def get_predictions(text, mode): | |
input_ids = tokenizer_pl(text, return_tensors="pt", truncation=True).input_ids | |
if mode == "Polish - RfC Generation": | |
output = model_pl.generate( | |
input_ids, | |
no_repeat_ngram_size=1, | |
num_beams=3, | |
num_beam_groups=3, | |
min_length=10, | |
max_length=100, | |
diversity_penalty=1.0, | |
) | |
elif mode == "Polish - RfC Detection": | |
output = model_det_pl.generate( | |
input_ids, | |
no_repeat_ngram_size=2, | |
num_beams=3, | |
num_beam_groups=3, | |
repetition_penalty=1.5, | |
diversity_penalty=2.0, | |
length_penalty=2.0, | |
) | |
predicted_rfc = tokenizer_pl.decode(output[0], skip_special_tokens=True) | |
return predicted_rfc | |
def trim_length(): | |
if len(st.session_state["input"]) > max_length: | |
st.session_state["input"] = st.session_state["input"][:max_length] | |
if __name__ == "__main__": | |
st.sidebar.image(img_short) | |
st.image(img_full) | |
st.title("VLT5 - Reason for Contact generator") | |
st.markdown("#### RfC Generation model.") | |
st.markdown("**Input**: Whole conversation. Should specify roles e.g. *AGENT: Hello, how can I help you? CLIENT: Hi, I would like to report a stolen card.* Put a whole conversation or full e-mail here.") | |
st.markdown("**Output**: Reason for calling for the whole conversation.") | |
st.markdown("#### RfC Detection model.") | |
st.markdown("**Input**: A single turn from the conversation e.g. *'Hello, how can I help you?'* or *'Hi, I would like to report a stolen card.'. Put a single turn or a few sentences here.*") | |
st.markdown("**Output**: Model will return an empty string if a turn possibly does not includes Reason for Calling, or a sentence if the RfC is detected.") | |
generated_rfc = "" | |
user_input = st.text_area( | |
label=f"Input text (max {max_length} characters)", | |
value="", | |
height=300, | |
on_change=trim_length, | |
key="input", | |
) | |
mode = st.sidebar.title("Model settings") | |
mode = st.sidebar.radio( | |
"Select model to test", | |
[ | |
"Polish - RfC Generation", | |
"Polish - RfC Detection", | |
], | |
) | |
result = st.button("Find reason for contact") | |
if result: | |
generated_rfc = get_predictions(text=user_input, mode=mode) | |
st.text_area("Find reason for contact", generated_rfc) | |
print(f"Input: {user_input} ---> Reason for contact: {generated_rfc}") |