AgaMiko's picture
Update app.py
76cab36
raw
history blame
3.63 kB
from transformers import T5ForConditionalGeneration, T5Tokenizer
import streamlit as st
from PIL import Image
import os
@st.cache(allow_output_mutation=True)
def load_model_cache():
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
tokenizer_pl = T5Tokenizer.from_pretrained(
"Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token
)
model_pl = T5ForConditionalGeneration.from_pretrained(
"Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token
)
model_det_pl = T5ForConditionalGeneration.from_pretrained(
"Voicelab/vlt5-base-rfc-detector-1.0", use_auth_token=auth_token
)
return tokenizer_pl, model_pl, model_det_pl
img_full = Image.open("images/vl-logo-nlp-blue.png")
img_short = Image.open("images/sVL-NLP-short.png")
img_favicon = Image.open("images/favicon_vl.png")
max_length: int = 5000
cache_size: int = 100
st.set_page_config(
page_title="DEMO - Reason for Contact generation",
page_icon=img_favicon,
initial_sidebar_state="expanded",
)
tokenizer_pl, model_pl, model_det_pl = load_model_cache()
def get_predictions(text, mode):
input_ids = tokenizer_pl(text, return_tensors="pt", truncation=True).input_ids
if mode == "Polish - RfC Generation":
output = model_pl.generate(
input_ids,
no_repeat_ngram_size=1,
num_beams=3,
num_beam_groups=3,
min_length=10,
max_length=100,
diversity_penalty=1.0,
)
elif mode == "Polish - RfC Detection":
output = model_det_pl.generate(
input_ids,
no_repeat_ngram_size=2,
num_beams=3,
num_beam_groups=3,
repetition_penalty=1.5,
diversity_penalty=2.0,
length_penalty=2.0,
)
predicted_rfc = tokenizer_pl.decode(output[0], skip_special_tokens=True)
return predicted_rfc
def trim_length():
if len(st.session_state["input"]) > max_length:
st.session_state["input"] = st.session_state["input"][:max_length]
if __name__ == "__main__":
st.sidebar.image(img_short)
st.image(img_full)
st.title("VLT5 - Reason for Contact generator")
st.markdown("#### RfC Generation model.")
st.markdown("**Input**: Whole conversation. Should specify roles e.g. *AGENT: Hello, how can I help you? CLIENT: Hi, I would like to report a stolen card.* Put a whole conversation or full e-mail here.")
st.markdown("**Output**: Reason for calling for the whole conversation.")
st.markdown("#### RfC Detection model.")
st.markdown("**Input**: A single turn from the conversation e.g. *'Hello, how can I help you?'* or *'Hi, I would like to report a stolen card.'. Put a single turn or a few sentences here.*")
st.markdown("**Output**: Model will return an empty string if a turn possibly does not includes Reason for Calling, or a sentence if the RfC is detected.")
generated_rfc = ""
user_input = st.text_area(
label=f"Input text (max {max_length} characters)",
value="",
height=300,
on_change=trim_length,
key="input",
)
mode = st.sidebar.title("Model settings")
mode = st.sidebar.radio(
"Select model to test",
[
"Polish - RfC Generation",
"Polish - RfC Detection",
],
)
result = st.button("Find reason for contact")
if result:
generated_rfc = get_predictions(text=user_input, mode=mode)
st.text_area("Find reason for contact", generated_rfc)
print(f"Input: {user_input} ---> Reason for contact: {generated_rfc}")