|
import datetime |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
import torch |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
|
|
from modules import shared |
|
from modules.models import clear_torch_cache, load_model, unload_model |
|
from modules.models_settings import get_model_metadata, update_model_parameters |
|
from modules.text_generation import encode |
|
|
|
|
|
def load_past_evaluations(): |
|
if Path('logs/evaluations.csv').exists(): |
|
df = pd.read_csv(Path('logs/evaluations.csv'), dtype=str) |
|
df['Perplexity'] = pd.to_numeric(df['Perplexity']) |
|
return df |
|
else: |
|
return pd.DataFrame(columns=['Model', 'LoRAs', 'Dataset', 'Perplexity', 'stride', 'max_length', 'Date', 'Comment']) |
|
|
|
|
|
past_evaluations = load_past_evaluations() |
|
|
|
|
|
def save_past_evaluations(df): |
|
global past_evaluations |
|
past_evaluations = df |
|
filepath = Path('logs/evaluations.csv') |
|
filepath.parent.mkdir(parents=True, exist_ok=True) |
|
df.to_csv(filepath, index=False) |
|
|
|
|
|
def calculate_perplexity(models, input_dataset, stride, _max_length): |
|
''' |
|
Based on: |
|
https://huggingface.co/docs/transformers/perplexity#calculating-ppl-with-fixedlength-models |
|
''' |
|
|
|
global past_evaluations |
|
cumulative_log = '' |
|
cumulative_log += "Loading the input dataset...\n\n" |
|
yield cumulative_log |
|
|
|
|
|
if input_dataset == 'wikitext': |
|
data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test') |
|
text = "\n\n".join(data['text']) |
|
elif input_dataset == 'ptb': |
|
data = load_dataset('ptb_text_only', 'penn_treebank', split='validation') |
|
text = "\n\n".join(data['sentence']) |
|
elif input_dataset == 'ptb_new': |
|
data = load_dataset('ptb_text_only', 'penn_treebank', split='test') |
|
text = " ".join(data['sentence']) |
|
else: |
|
with open(Path(f'training/datasets/{input_dataset}.txt'), 'r', encoding='utf-8') as f: |
|
text = f.read() |
|
|
|
for model in models: |
|
if is_in_past_evaluations(model, input_dataset, stride, _max_length): |
|
cumulative_log += f"`{model}` has already been tested. Ignoring.\n\n" |
|
yield cumulative_log |
|
continue |
|
|
|
if model != 'current model': |
|
try: |
|
yield cumulative_log + f"Loading `{model}`...\n\n" |
|
model_settings = get_model_metadata(model) |
|
shared.settings.update({k: v for k, v in model_settings.items() if k in shared.settings}) |
|
update_model_parameters(model_settings) |
|
shared.model_name = model |
|
unload_model() |
|
shared.model, shared.tokenizer = load_model(shared.model_name) |
|
except: |
|
cumulative_log += f"Failed to load `{model}`. Moving on.\n\n" |
|
yield cumulative_log |
|
continue |
|
|
|
cumulative_log += f"Processing `{shared.model_name}`...\n\n" |
|
yield cumulative_log + "Tokenizing the input dataset...\n\n" |
|
encodings = encode(text, add_special_tokens=False) |
|
seq_len = encodings.shape[1] |
|
if _max_length: |
|
max_length = _max_length |
|
elif hasattr(shared.model.config, 'max_position_embeddings'): |
|
max_length = shared.model.config.max_position_embeddings |
|
else: |
|
max_length = 2048 |
|
|
|
nlls = [] |
|
prev_end_loc = 0 |
|
for begin_loc in tqdm(range(0, seq_len, stride)): |
|
yield cumulative_log + f"Evaluating... {100*begin_loc/seq_len:.2f}%" |
|
end_loc = min(begin_loc + max_length, seq_len) |
|
trg_len = end_loc - prev_end_loc |
|
input_ids = encodings[:, begin_loc:end_loc] |
|
target_ids = input_ids.clone() |
|
target_ids[:, :-trg_len] = -100 |
|
clear_torch_cache() |
|
with torch.no_grad(): |
|
outputs = shared.model(input_ids=input_ids, labels=target_ids) |
|
|
|
|
|
|
|
|
|
neg_log_likelihood = outputs.loss |
|
|
|
nlls.append(neg_log_likelihood) |
|
prev_end_loc = end_loc |
|
if end_loc == seq_len: |
|
break |
|
|
|
ppl = torch.exp(torch.stack(nlls).mean()) |
|
add_entry_to_past_evaluations(float(ppl), shared.model_name, input_dataset, stride, _max_length) |
|
save_past_evaluations(past_evaluations) |
|
cumulative_log += f"The perplexity for `{shared.model_name}` is: {float(ppl)}\n\n" |
|
yield cumulative_log |
|
|
|
|
|
def add_entry_to_past_evaluations(perplexity, model, dataset, stride, max_length): |
|
global past_evaluations |
|
entry = { |
|
'Model': model, |
|
'LoRAs': ', '.join(shared.lora_names) or '-', |
|
'Dataset': dataset, |
|
'Perplexity': perplexity, |
|
'stride': str(stride), |
|
'max_length': str(max_length), |
|
'Date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), |
|
'Comment': '' |
|
} |
|
past_evaluations = pd.concat([past_evaluations, pd.DataFrame([entry])], ignore_index=True) |
|
|
|
|
|
def is_in_past_evaluations(model, dataset, stride, max_length): |
|
entries = past_evaluations[(past_evaluations['Model'] == model) & |
|
(past_evaluations['Dataset'] == dataset) & |
|
(past_evaluations['max_length'] == str(max_length)) & |
|
(past_evaluations['stride'] == str(stride))] |
|
|
|
if entries.shape[0] > 0: |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def generate_markdown_table(): |
|
sorted_df = past_evaluations.sort_values(by=['Dataset', 'stride', 'Perplexity', 'Date']) |
|
return sorted_df |
|
|