Warlord-K commited on
Commit
675d710
·
1 Parent(s): 26b5643

Added Uploading

Browse files
Files changed (2) hide show
  1. app.py +70 -4
  2. app_old.py +59 -0
app.py CHANGED
@@ -2,6 +2,8 @@ import os
2
  import faiss
3
  import gradio as gr
4
  from helpers import *
 
 
5
 
6
  detector = load_detector()
7
  model = load_model()
@@ -20,8 +22,9 @@ for r, _, f in os.walk(os.getcwd() + "/images"):
20
  source_faces = []
21
  for img in source_imgs:
22
  try:
23
- faces, id = extract_faces(detector, img)
24
- source_faces.append(faces[id])
 
25
  except Exception as e:
26
  print(f"Skipping {img}, {e}")
27
 
@@ -45,7 +48,7 @@ def find_names(image):
45
  recognition(imgs, ids, names, source_faces, d, source_imgs)
46
  return ",".join(names), "Recognition.jpg"
47
 
48
- demo = gr.Interface(
49
  find_names,
50
  gr.Image(type="filepath"),
51
  ["text", gr.Image(type = "filepath")],
@@ -55,5 +58,68 @@ demo = gr.Interface(
55
  ]
56
  )
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  if __name__ == "__main__":
59
- demo.launch()
 
 
2
  import faiss
3
  import gradio as gr
4
  from helpers import *
5
+ import shutil
6
+ from PIL import Image
7
 
8
  detector = load_detector()
9
  model = load_model()
 
22
  source_faces = []
23
  for img in source_imgs:
24
  try:
25
+ # faces, id = extract_faces(detector, img)
26
+ # source_faces.append(faces[id])
27
+ source_faces.append(Image.open(img))
28
  except Exception as e:
29
  print(f"Skipping {img}, {e}")
30
 
 
48
  recognition(imgs, ids, names, source_faces, d, source_imgs)
49
  return ",".join(names), "Recognition.jpg"
50
 
51
+ detect = gr.Interface(
52
  find_names,
53
  gr.Image(type="filepath"),
54
  ["text", gr.Image(type = "filepath")],
 
58
  ]
59
  )
60
 
61
+
62
+ def upload_files(files):
63
+ if not os.path.exists(os.path.join(os.getcwd(), "temp")):
64
+ os.mkdir(os.path.join(os.getcwd(), "temp"))
65
+ for file in files:
66
+ shutil.move(file.name, os.path.join(os.getcwd(), "temp", file.name.split('\\')[-1]))
67
+ return None, "Uploaded!"
68
+
69
+ with gr.Blocks() as upload:
70
+ gr.Markdown("# Select Images to Upload and click Upload")
71
+ with gr.Row():
72
+ input = gr.Files(file_types=[".jpg", ".jpeg", ".png"], label="Upload images")
73
+ # input = gr.Image(type="filepath")
74
+ output = gr.Textbox()
75
+ upload_btn = gr.Button(label="Upload")
76
+ upload_btn.click(upload_files, inputs=[input], outputs=[input, output])
77
+
78
+ def load_image():
79
+ global i, imgs
80
+ images = os.listdir(os.path.join(os.getcwd(), "temp"))
81
+ imgs = []
82
+ for image in images:
83
+ faces, id = extract_faces(detector, os.path.join(os.getcwd(), "temp", image))
84
+ # imgs.append(Image.open(os.path.join(os.getcwd(), "temp", image)))
85
+ imgs.append(faces[id])
86
+ return imgs[0], "Loaded!"
87
+
88
+ def save_img(label):
89
+ global i, imgs
90
+ imgs[i].save(os.path.join(os.getcwd(), "images", f"{label}.jpg"))
91
+ i+=1
92
+ if i < len(imgs):
93
+ return imgs[i], "Saved!"
94
+ else:
95
+ clear()
96
+ return None, "Finished!"
97
+
98
+ def clear():
99
+ global i, imgs
100
+ i = 0
101
+ imgs = None
102
+ shutil.rmtree(os.path.join(os.getcwd(), "temp"))
103
+ return None, None
104
+
105
+ i = 0
106
+ imgs = None
107
+
108
+ with gr.Blocks() as annotate:
109
+ output = gr.Image(type="pil", label="Image")
110
+ input = gr.Textbox(label = "Enter Label")
111
+ with gr.Row():
112
+ next_btn = gr.Button(label="Next")
113
+ next_btn.click(load_image, inputs=[], outputs=[output, input])
114
+ save_btn = gr.Button(label="Save")
115
+ save_btn.click(save_img, inputs=[input], outputs=[output, input])
116
+ clear_btn = gr.Button(label="Clear")
117
+ clear_btn.click(clear, inputs=[], outputs=[output, input])
118
+
119
+ tabbed_interface = gr.TabbedInterface(
120
+ [upload, annotate, detect],
121
+ ["Upload", "Annotate", "Attendance"],
122
+ )
123
  if __name__ == "__main__":
124
+ tabbed_interface.launch()
125
+
app_old.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import faiss
3
+ import gradio as gr
4
+ from helpers import *
5
+
6
+ detector = load_detector()
7
+ model = load_model()
8
+
9
+ source_imgs = []
10
+ for r, _, f in os.walk(os.getcwd() + "/images"):
11
+ for file in f:
12
+ if (
13
+ (".jpg" in file.lower())
14
+ or (".jpeg" in file.lower())
15
+ or (".png" in file.lower())
16
+ ):
17
+ exact_path = r + "/" + file
18
+ source_imgs.append(exact_path)
19
+
20
+ source_faces = []
21
+ for img in source_imgs:
22
+ try:
23
+ faces, id = extract_faces(detector, img)
24
+ source_faces.append(faces[id])
25
+ except Exception as e:
26
+ print(f"Skipping {img}, {e}")
27
+
28
+ source_embeddings = get_embeddings(model, source_faces)
29
+
30
+ def find_names(image):
31
+ imgs, _ = extract_faces(detector, image)
32
+ for i, face in enumerate(imgs):
33
+ if(face.size[0] * face.size[1] < 1000):
34
+ del imgs[i]
35
+
36
+ embeds = get_embeddings(model, imgs)
37
+ d = np.zeros((len(source_embeddings), len(embeds)))
38
+ for i, s in enumerate(source_embeddings):
39
+ for j, t in enumerate(embeds):
40
+ d[i][j] = findCosineDistance(s, t)
41
+ ids = np.argmin(d, axis = 0)
42
+ names = []
43
+ for i in ids:
44
+ names.append(source_imgs[i].split("/")[-1].split(".")[0])
45
+ recognition(imgs, ids, names, source_faces, d, source_imgs)
46
+ return ",".join(names), "Recognition.jpg"
47
+
48
+ demo = gr.Interface(
49
+ find_names,
50
+ gr.Image(type="filepath"),
51
+ ["text", gr.Image(type = "filepath")],
52
+ examples = [
53
+ os.path.join(os.path.dirname(__file__), "examples/group1.jpg"),
54
+ os.path.join(os.path.dirname(__file__), "examples/group2.jpg")
55
+ ]
56
+ )
57
+
58
+ if __name__ == "__main__":
59
+ demo.launch()