Spaces:
Runtime error
Runtime error
File size: 17,540 Bytes
9ae46f4 ef3d157 9ae46f4 ef3d157 9ae46f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import argparse
import json
from pathlib import Path
import re
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from .modules.layers import LstmSeq2SeqEncoder
from .modules.base import InstructBase
from .modules.evaluator import Evaluator, greedy_search
from .modules.span_rep import SpanRepLayer
from .modules.token_rep import TokenRepLayer
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
class GLiNER(InstructBase, PyTorchModelHubMixin):
def __init__(self, config):
super().__init__(config)
self.config = config
# [ENT] token
self.entity_token = "<<ENT>>"
self.sep_token = "<<SEP>>"
# usually a pretrained bidirectional transformer, returns first subtoken representation
self.token_rep_layer = TokenRepLayer(model_name=config.model_name, fine_tune=config.fine_tune,
subtoken_pooling=config.subtoken_pooling, hidden_size=config.hidden_size,
add_tokens=[self.entity_token, self.sep_token])
# hierarchical representation of tokens
self.rnn = LstmSeq2SeqEncoder(
input_size=config.hidden_size,
hidden_size=config.hidden_size // 2,
num_layers=1,
bidirectional=True,
)
# span representation
self.span_rep_layer = SpanRepLayer(
span_mode=config.span_mode,
hidden_size=config.hidden_size,
max_width=config.max_width,
dropout=config.dropout,
)
# prompt representation (FFN)
self.prompt_rep_layer = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size * 4),
nn.Dropout(config.dropout),
nn.ReLU(),
nn.Linear(config.hidden_size * 4, config.hidden_size)
)
def compute_score_train(self, x):
span_idx = x['span_idx'] * x['span_mask'].unsqueeze(-1)
new_length = x['seq_length'].clone()
new_tokens = []
all_len_prompt = []
num_classes_all = []
# add prompt to the tokens
for i in range(len(x['tokens'])):
all_types_i = list(x['classes_to_id'][i].keys())
# multiple entity types in all_types. Prompt is appended at the start of tokens
entity_prompt = []
num_classes_all.append(len(all_types_i))
# add enity types to prompt
for entity_type in all_types_i:
entity_prompt.append(self.entity_token) # [ENT] token
entity_prompt.append(entity_type) # entity type
entity_prompt.append(self.sep_token) # [SEP] token
# prompt format:
# [ENT] entity_type [ENT] entity_type ... [ENT] entity_type [SEP]
# add prompt to the tokens
tokens_p = entity_prompt + x['tokens'][i]
# input format:
# [ENT] entity_type_1 [ENT] entity_type_2 ... [ENT] entity_type_m [SEP] token_1 token_2 ... token_n
# update length of the sequence (add prompt length to the original length)
new_length[i] = new_length[i] + len(entity_prompt)
# update tokens
new_tokens.append(tokens_p)
# store prompt length
all_len_prompt.append(len(entity_prompt))
# create a mask using num_classes_all (0, if it exceeds the number of classes, 1 otherwise)
max_num_classes = max(num_classes_all)
entity_type_mask = torch.arange(max_num_classes).unsqueeze(0).expand(len(num_classes_all), -1).to(
x['span_mask'].device)
entity_type_mask = entity_type_mask < torch.tensor(num_classes_all).unsqueeze(-1).to(
x['span_mask'].device) # [batch_size, max_num_classes]
# compute all token representations
bert_output = self.token_rep_layer(new_tokens, new_length)
word_rep_w_prompt = bert_output["embeddings"] # embeddings for all tokens (with prompt)
mask_w_prompt = bert_output["mask"] # mask for all tokens (with prompt)
# get word representation (after [SEP]), mask (after [SEP]) and entity type representation (before [SEP])
word_rep = [] # word representation (after [SEP])
mask = [] # mask (after [SEP])
entity_type_rep = [] # entity type representation (before [SEP])
for i in range(len(x['tokens'])):
prompt_entity_length = all_len_prompt[i] # length of prompt for this example
# get word representation (after [SEP])
word_rep.append(word_rep_w_prompt[i, prompt_entity_length:prompt_entity_length + x['seq_length'][i]])
# get mask (after [SEP])
mask.append(mask_w_prompt[i, prompt_entity_length:prompt_entity_length + x['seq_length'][i]])
# get entity type representation (before [SEP])
entity_rep = word_rep_w_prompt[i, :prompt_entity_length - 1] # remove [SEP]
entity_rep = entity_rep[0::2] # it means that we take every second element starting from the second one
entity_type_rep.append(entity_rep)
# padding for word_rep, mask and entity_type_rep
word_rep = pad_sequence(word_rep, batch_first=True) # [batch_size, seq_len, hidden_size]
mask = pad_sequence(mask, batch_first=True) # [batch_size, seq_len]
entity_type_rep = pad_sequence(entity_type_rep, batch_first=True) # [batch_size, len_types, hidden_size]
# compute span representation
word_rep = self.rnn(word_rep, mask)
span_rep = self.span_rep_layer(word_rep, span_idx)
# compute final entity type representation (FFN)
entity_type_rep = self.prompt_rep_layer(entity_type_rep) # (batch_size, len_types, hidden_size)
num_classes = entity_type_rep.shape[1] # number of entity types
# similarity score
scores = torch.einsum('BLKD,BCD->BLKC', span_rep, entity_type_rep)
return scores, num_classes, entity_type_mask
def forward(self, x):
# compute span representation
scores, num_classes, entity_type_mask = self.compute_score_train(x)
batch_size = scores.shape[0]
# loss for filtering classifier
logits_label = scores.view(-1, num_classes)
labels = x["span_label"].view(-1) # (batch_size * num_spans)
mask_label = labels != -1 # (batch_size * num_spans)
labels.masked_fill_(~mask_label, 0) # Set the labels of padding tokens to 0
# one-hot encoding
labels_one_hot = torch.zeros(labels.size(0), num_classes + 1, dtype=torch.float32).to(scores.device)
labels_one_hot.scatter_(1, labels.unsqueeze(1), 1) # Set the corresponding index to 1
labels_one_hot = labels_one_hot[:, 1:] # Remove the first column
# Shape of labels_one_hot: (batch_size * num_spans, num_classes)
# compute loss (without reduction)
all_losses = F.binary_cross_entropy_with_logits(logits_label, labels_one_hot,
reduction='none')
# mask loss using entity_type_mask (B, C)
masked_loss = all_losses.view(batch_size, -1, num_classes) * entity_type_mask.unsqueeze(1)
all_losses = masked_loss.view(-1, num_classes)
# expand mask_label to all_losses
mask_label = mask_label.unsqueeze(-1).expand_as(all_losses)
# put lower loss for in label_one_hot (2 for positive, 1 for negative)
weight_c = labels_one_hot + 1
# apply mask
all_losses = all_losses * mask_label.float() * weight_c
return all_losses.sum()
def compute_score_eval(self, x, device):
# check if classes_to_id is dict
assert isinstance(x['classes_to_id'], dict), "classes_to_id must be a dict"
span_idx = (x['span_idx'] * x['span_mask'].unsqueeze(-1)).to(device)
all_types = list(x['classes_to_id'].keys())
# multiple entity types in all_types. Prompt is appended at the start of tokens
entity_prompt = []
# add enity types to prompt
for entity_type in all_types:
entity_prompt.append(self.entity_token)
entity_prompt.append(entity_type)
entity_prompt.append(self.sep_token)
prompt_entity_length = len(entity_prompt)
# add prompt
tokens_p = [entity_prompt + tokens for tokens in x['tokens']]
seq_length_p = x['seq_length'] + prompt_entity_length
out = self.token_rep_layer(tokens_p, seq_length_p)
word_rep_w_prompt = out["embeddings"]
mask_w_prompt = out["mask"]
# remove prompt
word_rep = word_rep_w_prompt[:, prompt_entity_length:, :]
mask = mask_w_prompt[:, prompt_entity_length:]
# get_entity_type_rep
entity_type_rep = word_rep_w_prompt[:, :prompt_entity_length - 1, :]
# extract [ENT] tokens (which are at even positions in entity_type_rep)
entity_type_rep = entity_type_rep[:, 0::2, :]
entity_type_rep = self.prompt_rep_layer(entity_type_rep) # (batch_size, len_types, hidden_size)
word_rep = self.rnn(word_rep, mask)
span_rep = self.span_rep_layer(word_rep, span_idx)
local_scores = torch.einsum('BLKD,BCD->BLKC', span_rep, entity_type_rep)
return local_scores
@torch.no_grad()
def predict(self, x, flat_ner=False, threshold=0.5):
self.eval()
local_scores = self.compute_score_eval(x, device=next(self.parameters()).device)
spans = []
for i, _ in enumerate(x["tokens"]):
local_i = local_scores[i]
wh_i = [i.tolist() for i in torch.where(torch.sigmoid(local_i) > threshold)]
span_i = []
for s, k, c in zip(*wh_i):
if s + k < len(x["tokens"][i]):
span_i.append((s, s + k, x["id_to_classes"][c + 1], local_i[s, k, c]))
span_i = greedy_search(span_i, flat_ner)
spans.append(span_i)
return spans
def predict_entities(self, text, labels, flat_ner=True, threshold=0.5):
tokens = []
start_token_idx_to_text_idx = []
end_token_idx_to_text_idx = []
for match in re.finditer(r'\w+(?:[-_]\w+)*|\S', text):
tokens.append(match.group())
start_token_idx_to_text_idx.append(match.start())
end_token_idx_to_text_idx.append(match.end())
input_x = {"tokenized_text": tokens, "ner": None}
x = self.collate_fn([input_x], labels)
output = self.predict(x, flat_ner=flat_ner, threshold=threshold)
entities = []
for start_token_idx, end_token_idx, ent_type in output[0]:
start_text_idx = start_token_idx_to_text_idx[start_token_idx]
end_text_idx = end_token_idx_to_text_idx[end_token_idx]
entities.append({
"start": start_token_idx_to_text_idx[start_token_idx],
"end": end_token_idx_to_text_idx[end_token_idx],
"text": text[start_text_idx:end_text_idx],
"label": ent_type,
})
return entities
def evaluate(self, test_data, flat_ner=False, threshold=0.5, batch_size=12, entity_types=None):
self.eval()
data_loader = self.create_dataloader(test_data, batch_size=batch_size, entity_types=entity_types, shuffle=False)
device = next(self.parameters()).device
all_preds = []
all_trues = []
for x in data_loader:
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(device)
batch_predictions = self.predict(x, flat_ner, threshold)
all_preds.extend(batch_predictions)
all_trues.extend(x["entities"])
evaluator = Evaluator(all_trues, all_preds)
out, f1 = evaluator.evaluate()
return out, f1
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu",
strict: bool = False,
**model_kwargs,
):
# 1. Backwards compatibility: Use "gliner_base.pt" and "gliner_multi.pt" with all data
filenames = ["gliner_base.pt", "gliner_multi.pt"]
for filename in filenames:
model_file = Path(model_id) / filename
if not model_file.exists():
try:
model_file = hf_hub_download(
repo_id=model_id,
filename=filename,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
except HfHubHTTPError:
continue
dict_load = torch.load(model_file, map_location=torch.device(map_location))
config = dict_load["config"]
state_dict = dict_load["model_weights"]
config.model_name = "microsoft/deberta-v3-base" if filename == "gliner_base.pt" else "microsoft/mdeberta-v3-base"
model = cls(config)
model.load_state_dict(state_dict, strict=strict, assign=True)
# Required to update flair's internals as well:
model.to(map_location)
return model
# 2. Newer format: Use "pytorch_model.bin" and "gliner_config.json"
from .train import load_config_as_namespace
model_file = Path(model_id) / "pytorch_model.bin"
if not model_file.exists():
model_file = hf_hub_download(
repo_id=model_id,
filename="pytorch_model.bin",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
config_file = Path(model_id) / "gliner_config.json"
if not config_file.exists():
config_file = hf_hub_download(
repo_id=model_id,
filename="gliner_config.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
config = load_config_as_namespace(config_file)
model = cls(config)
state_dict = torch.load(model_file, map_location=torch.device(map_location))
model.load_state_dict(state_dict, strict=strict, assign=True)
model.to(map_location)
return model
def save_pretrained(
self,
save_directory: Union[str, Path],
*,
config: Optional[Union[dict, "DataclassInstance"]] = None,
repo_id: Optional[str] = None,
push_to_hub: bool = False,
**push_to_hub_kwargs,
) -> Optional[str]:
"""
Save weights in local directory.
Args:
save_directory (`str` or `Path`):
Path to directory in which the model weights and configuration will be saved.
config (`dict` or `DataclassInstance`, *optional*):
Model configuration specified as a key/value dictionary or a dataclass instance.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Huggingface Hub after saving it.
repo_id (`str`, *optional*):
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if
not provided.
kwargs:
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method.
"""
save_directory = Path(save_directory)
save_directory.mkdir(parents=True, exist_ok=True)
# save model weights/files
torch.save(self.state_dict(), save_directory / "pytorch_model.bin")
# save config (if provided)
if config is None:
config = self.config
if config is not None:
if isinstance(config, argparse.Namespace):
config = vars(config)
(save_directory / "gliner_config.json").write_text(json.dumps(config, indent=2))
# push to the Hub if required
if push_to_hub:
kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input
if config is not None: # kwarg for `push_to_hub`
kwargs["config"] = config
if repo_id is None:
repo_id = save_directory.name # Defaults to `save_directory` name
return self.push_to_hub(repo_id=repo_id, **kwargs)
return None
def to(self, device):
super().to(device)
import flair
flair.device = device
return self
|