Spaces:
Sleeping
Sleeping
WebashalarForML
commited on
Update utils/json_to_spacy.py
Browse files- utils/json_to_spacy.py +46 -66
utils/json_to_spacy.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
import json
|
2 |
import spacy
|
3 |
from spacy.tokens import DocBin
|
4 |
-
import os
|
5 |
|
6 |
def read_in_chunks(file_path, chunk_size=1024):
|
7 |
-
"""Read file in chunks to handle large files."""
|
8 |
-
print(f"Reading file: {file_path}")
|
9 |
-
if not os.path.exists(file_path):
|
10 |
-
print(f"Error: File not found at {file_path}")
|
11 |
-
return
|
12 |
-
|
13 |
with open(file_path, 'r', encoding='utf-8') as file:
|
14 |
while True:
|
15 |
data = file.read(chunk_size)
|
@@ -17,71 +10,58 @@ def read_in_chunks(file_path, chunk_size=1024):
|
|
17 |
break
|
18 |
yield data
|
19 |
|
20 |
-
def extract_text_and_entities(item):
|
21 |
-
"""Dynamically extract text and entities, handling multiple JSON formats."""
|
22 |
-
print(f"Processing item: {item}")
|
23 |
-
if isinstance(item, dict):
|
24 |
-
# Dictionary structure: {"text": ..., "entities": ...}
|
25 |
-
text = item.get("text", "")
|
26 |
-
entities = item.get("entities", [])
|
27 |
-
elif isinstance(item, list) and len(item) >= 2:
|
28 |
-
# List structure: ["text", {"entities": ...}]
|
29 |
-
text = item[0] if isinstance(item[0], str) else ""
|
30 |
-
entities = item[1].get("entities", []) if isinstance(item[1], dict) else []
|
31 |
-
else:
|
32 |
-
print(f"Unexpected item format: {item}")
|
33 |
-
return None, [] # Return empty text and entities
|
34 |
-
|
35 |
-
valid_entities = [
|
36 |
-
(start, end, label) for start, end, label in entities
|
37 |
-
if isinstance(start, int) and isinstance(end, int) and isinstance(label, str)
|
38 |
-
]
|
39 |
-
return text, valid_entities
|
40 |
-
|
41 |
def convert_json_to_spacy(json_file_path, spacy_file_path):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
file_content
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
doc_bin = DocBin()
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
doc = nlp.make_doc(entry["text"])
|
63 |
-
entities = []
|
64 |
-
seen_positions = set()
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
print(f"Error decoding JSON: {e}")
|
86 |
-
except Exception as e:
|
87 |
-
print(f"An unexpected error occurred: {e}")
|
|
|
1 |
import json
|
2 |
import spacy
|
3 |
from spacy.tokens import DocBin
|
|
|
4 |
|
5 |
def read_in_chunks(file_path, chunk_size=1024):
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
with open(file_path, 'r', encoding='utf-8') as file:
|
7 |
while True:
|
8 |
data = file.read(chunk_size)
|
|
|
10 |
break
|
11 |
yield data
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def convert_json_to_spacy(json_file_path, spacy_file_path):
|
14 |
+
# Read the file in chunks and combine the chunks
|
15 |
+
file_content = ""
|
16 |
+
for chunk in read_in_chunks(json_file_path):
|
17 |
+
file_content += chunk
|
18 |
+
|
19 |
+
# Parse the JSON data
|
20 |
+
data = json.loads(file_content)
|
21 |
|
22 |
+
# Prepare the data for spaCy
|
23 |
+
spacy_format = []
|
24 |
|
25 |
+
for item in data:
|
26 |
+
text = item[0] # The first element in the list is the text
|
27 |
+
entities = item[1]['entities'] # The second element contains the dictionary with 'entities'
|
28 |
+
spacy_entities = [(start, end, label) for start, end, label in entities]
|
29 |
+
spacy_format.append({"text": text, "entities": spacy_entities})
|
30 |
|
31 |
+
# Create a blank English model
|
32 |
+
nlp = spacy.blank("en")
|
|
|
33 |
|
34 |
+
# Initialize a DocBin object
|
35 |
+
doc_bin = DocBin()
|
|
|
|
|
|
|
36 |
|
37 |
+
# Convert the data to spaCy Doc objects and add to DocBin
|
38 |
+
for entry in spacy_format:
|
39 |
+
doc = nlp.make_doc(entry["text"])
|
40 |
+
# Convert entities
|
41 |
+
entities = []
|
42 |
+
seen_positions = set() # To track positions and avoid overlap
|
43 |
+
for start, end, label in entry["entities"]:
|
44 |
+
# Ensure span is within the document's length
|
45 |
+
if start < 0 or end > len(doc.text) or start >= end:
|
46 |
+
print(f"Invalid span: start={start}, end={end}, label={label}")
|
47 |
+
continue
|
48 |
|
49 |
+
# Check for overlaps and prioritize entities
|
50 |
+
if not any(start < e_end and end > e_start for e_start, e_end, _ in seen_positions):
|
51 |
+
span = doc.char_span(start, end, label=label)
|
52 |
+
if span is not None:
|
53 |
+
entities.append(span)
|
54 |
+
seen_positions.add((start, end, label))
|
55 |
+
else:
|
56 |
+
print(f"Overlapping span: start={start}, end={end}, label={label}")
|
57 |
+
|
58 |
+
# Set entities
|
59 |
+
doc.ents = entities
|
60 |
+
|
61 |
+
# Add to DocBin
|
62 |
+
doc_bin.add(doc)
|
63 |
|
64 |
+
# Save the DocBin to a .spacy file
|
65 |
+
doc_bin.to_disk(spacy_file_path)
|
66 |
|
67 |
+
print(f"Data has been successfully saved to {spacy_file_path}!")
|
|
|
|
|
|